
SQLObject Documentation
Release 3.3.0

Ian Bicking and contributors

May 07, 2017

Contents

1 Documentation 3

2 Example 75

3 Indices and tables 77

i

ii

SQLObject Documentation, Release 3.3.0

SQLObject is a popular Object Relational Manager for providing an object interface to your database, with tables as
classes, rows as instances, and columns as attributes.

SQLObject includes a Python-object-based query language that makes SQL more abstract, and provides substantial
database independence for applications.

Contents 1

SQLObject Documentation, Release 3.3.0

2 Contents

CHAPTER 1

Documentation

Download SQLObject

The latest releases are always available on the Python Package Index, and is installable with pip or easy_install.

You can install the latest release with:

pip install -U SQLObject

or:

easy_install -U SQLObject

You can install the latest version of SQLObject with:

easy_install SQLObject==dev

You can install the latest bug fixing branch with:

easy_install SQLObject==bugfix

If you want to require a specific revision (because, for instance, you need a bugfix that hasn’t appeared in a release),
you can put this in your setuptools using setup.py file:

setup(...
install_requires=["SQLObject==bugfix,>=0.7.1dev-r1485"],

)

This says that you need revision 1485 or higher. But it also says that you can aquire the “bugfix” version to try to get
that. In fact, when you install SQLObject==bugfix you will be installing a specific version, and “bugfix” is just a
kind of label for a way of acquiring the version (it points to a branch in the repository).

3

https://pypi.python.org/pypi/SQLObject
https://pip.pypa.io/en/latest/
https://setuptools.readthedocs.io/en/latest/easy_install.html
https://setuptools.readthedocs.io/en/latest/index.html

SQLObject Documentation, Release 3.3.0

Repositories

The SQLObject git repositories are located at https://github.com/sqlobject and https://sourceforge.net/p/sqlobject/_list/
git

Before switching to git development was performed at the Subversion repository that is no longer available.

SQLObject Community

SQLObject questions and discussion happens on the sqlobject-discuss mailing list.

Bugs should be submitted to the GitHub issue tracker or bug tracker at SourceForge, and patches as pull requests at
GitHub or to the patch tracker at SF.

Development takes place in the git repositories. There are development docs, i.e the docs from the development branch
(master). If you are interested in contributing you should read the Developer Guide.

The Author List tries to list all the major contributors.

One can also contribute to community-editable recipe/documentation site.

SQLObject Links

Contents

• SQLObject Links

– Articles and Documentation

– Open Source Projects

If you have a link you’d like added to this page, please submit a pull requests at GitHub or a bug report with the link
and title at bug tracker.

Articles and Documentation

• Connecting databases to Python with SQLObject; an article at DeveloperWorks.

• DB migration using sqlobject-admin how-to.

• Using raw SQL with SQLObject and keeping the object-y goodness.

• Example of using SQLObject with web.py under mod_wsgi.

Open Source Projects

• Catwalk is a web-based SQLObject browser and object editor (included in TurboGears 1.0).

• Ultra Gleeper, a Recommendation Engine for Web Pages.

• Guten; an application for browsing, reading, and managing books from Project Gutenberg.

4 Chapter 1. Documentation

https://git-scm.com/
https://github.com/sqlobject
https://sourceforge.net/p/sqlobject/_list/git
https://sourceforge.net/p/sqlobject/_list/git
https://lists.sourceforge.net/mailman/listinfo/sqlobject-discuss
https://github.com/sqlobject/sqlobject/issues
https://sourceforge.net/p/sqlobject/bugs/
https://github.com/sqlobject/sqlobject/pulls
https://github.com/sqlobject/sqlobject/pulls
https://sourceforge.net/p/sqlobject/patches/
https://sites.google.com/site/sqlobject/
https://github.com/sqlobject/sqlobject/pulls
https://sourceforge.net/p/sqlobject/bugs/
http://www.ibm.com/developerworks/library/os-pythonsqlo/index.html
http://www.algorithm.co.il/blogs/index.php/programming/python/simple-sqlobject-db-migration-how-to/
http://www.psychicorigami.com/2007/12/16/using-raw-sql-with-sqlobject-and-keeping-the-object-y-goodness/
https://github.com/RhubarbSin/example-sqlobject-webpy
http://turbogears.org/1.0/docs/Catwalk.html
http://www.crummy.com/software/UltraGleeper/
http://guten.sourceforge.net/
https://www.gutenberg.org/

SQLObject Documentation, Release 3.3.0

News

Contents:

• News

– SQLObject 3.3.0

* Features

* Minor features

* Drivers (work in progress)

* Documentation

* Tests

– SQLObject 3.2.0

* Minor features

* Drivers (work in progress)

* Bug fixes

* Documentation

* Tests

– SQLObject 3.1.0

* Features

* Documentation

* Source code

* Tests

– SQLObject 3.0.0

* Features

* Minor features

* Development

* Documentation

SQLObject 3.3.0

Released 7 May 2017.

Features

• Support for Python 2.6 is declared obsolete and will be removed in the next release.

1.4. News 5

SQLObject Documentation, Release 3.3.0

Minor features

• Convert scripts repository to devscripts subdirectory. Some of thses scripts are version-dependent so it’s better
to have them in the main repo.

• Test for __nonzero__ under Python 2, __bool__ under Python 3 in BoolCol.

Drivers (work in progress)

• Add support for PyODBC and PyPyODBC (pure-python ODBC DB API driver) for MySQL, PostgreSQL and
MS SQL. Driver names are pyodbc, pypyodbc or odbc (try pyodbc and pypyodbc). There are some
problems with pyodbc and many problems with pypyodbc.

Documentation

• Stop updating http://sqlobject.readthedocs.org/ - it’s enough to have http://sqlobject.org/

Tests

• Run tests at Travis CI and AppVeyor with Python 3.6, x86 and x64.

• Stop running tests at Travis with Python 2.6.

• Stop running tests at AppVeyor with pymssql - too many timeouts and problems.

SQLObject 3.2.0

Released 11 Mar 2017.

Minor features

• Drop table name from VACUUM command in SQLiteConnection: SQLite doesn’t vacuum a single table and
SQLite 3.15 uses the supplied name as the name of the attached database to vacuum.

• Remove driver keyword from RdbhostConnection as it allows one driver rdbhdb.

• Add driver keyword for FirebirdConnection. Allowed values are ‘fdb’, ‘kinterbasdb’ and ‘pyfirebirdsql’.
Default is to test ‘fdb’ and ‘kinterbasdb’ in that order. pyfirebirdsql is supported but has problems.

• Add driver keyword for MySQLConnection. Allowed values are ‘mysqldb’, ‘connector’, ‘oursql’ and
‘pymysql’. Default is to test for mysqldb only.

• Add support for MySQL Connector (pure python; binary packages are not at PyPI and hence are hard to install
and test).

• Add support for oursql MySQL driver (only Python 2.6 and 2.7 until oursql author fixes Python 3 compatibility).

• Add support for PyMySQL - pure python mysql interface).

• Add parameter timeout for MSSQLConnection (usable only with pymssql driver); timeouts are in seconds.

• Remove deprecated ez_setup.py.

6 Chapter 1. Documentation

http://sqlobject.readthedocs.org/
http://sqlobject.org/
https://pypi.python.org/pypi/mysql-connector
https://dev.mysql.com/doc/connector-python/en/
https://github.com/python-oursql/oursql
https://github.com/PyMySQL/PyMySQL/

SQLObject Documentation, Release 3.3.0

Drivers (work in progress)

• Extend support for PyGreSQL driver. There are still some problems.

• Add support for py-postgresql PostgreSQL driver. There are still problems with the driver.

• Add support for pyfirebirdsql.There are still problems with the driver.

Bug fixes

• Fix MSSQLConnection.columnsFromSchema: remove (and) from default value.

• Fix MSSQLConnection and SybaseConnection: insert default values into a table with just one IDENTITY
column.

• Remove excessive NULLs from CREATE TABLE for MSSQL/Sybase.

• Fix concatenation operator for MSSQL/Sybase (it’s +, not ||).

• Fix MSSQLConnection.server_version() under Py3 (decode version to str).

Documentation

• The docs are now generated with Sphinx.

• Move docs/LICENSE to the top-level directory so that Github recognizes it.

Tests

• Rename py.test -> pytest in tests and docs.

• Great Renaming: fix pytest warnings by renaming TestXXX classes to SOTestXXX to prevent pytest to
recognize them as test classes.

• Fix pytest warnings by converting yield tests to plain calls: yield tests were deprecated in pytest.

• Tests are now run at CIs with Python 3.5.

• Drop Circle CI.

• Run at Travis CI tests with Firebird backend (server version 2.5; drivers fdb and firebirdsql). There are problems
with tests.

• Run tests at AppVeyor for windows testing. Run tests with MS SQL, MySQL, Postgres and SQLite backends;
use Python 2.7, 3.4 and 3.5, x86 and x64. There are problems with MS SQL and MySQL.

SQLObject 3.1.0

Released 16 Aug 2016.

Features

• Add UuidCol.

• Add JsonbCol. Only for PostgreSQL. Requires psycopg2 >= 2.5.4 and PostgreSQL >= 9.2.

• Add JSONCol, a universal json column.

1.4. News 7

https://pypi.python.org/pypi/py-postgresql
https://pypi.python.org/pypi/firebirdsql

SQLObject Documentation, Release 3.3.0

• For Python >= 3.4 minimal FormEncode version is now 1.3.1.

• If mxDateTime is in use, convert timedelta (returned by MySQL) to mxDateTime.Time.

Documentation

• Developer’s Guide is extended to explain SQLObject architecture and how to create a new column type.

• Fix URLs that can be found; remove missing links.

• Rename reStructuredText files from *.txt to *.rst.

Source code

• Fix all import * using https://github.com/zestyping/star-destroyer.

Tests

• Tests are now run at Circle CI.

• Use pytest-cov for test coverage. Report test coverage via coveralls.io and codecov.io.

• Install mxDateTime to run date/time tests with it.

SQLObject 3.0.0

Released 1 Jun 2016.

Features

• Support for Python 2 and Python 3 with one codebase! (Python version >= 3.4 currently required.)

Minor features

• PyDispatcher (>=2.0.4) was made an external dependency.

Development

• Source code was made flake8-clean.

Documentation

• Documentation is published at http://sqlobject.readthedocs.org/ in Sphinx format.

Older news

8 Chapter 1. Documentation

https://github.com/zestyping/star-destroyer
http://sqlobject.readthedocs.org/

SQLObject Documentation, Release 3.3.0

SQLObject and Python 3

Contents

• SQLObject and Python 3

– Changes between Python 2 and Python 3

* BLOBCol

* StringCol

* UnicodeCol

– Python 3 and MySQL

– Using databases created with SQLObject and Python 2 in Python 3

* SQLite

* Postgres

* MySQL

Changes between Python 2 and Python 3

There are a few changes in the behaviour of SQLObject on Python 3, due to the changed stings / bytes handling
introduced in Python 3.0.

BLOBCol

In Python 3, BLOBCol now accepts and returns bytes, rather than strings as it did in Python 2.

StringCol

In Python 3, StringCol now accepts arbitrary Unicode strings.

UnicodeCol

The dbEncoding parameter to UnicodeCol has no effect in Python 3 code. This is now handled by the underlying
database layer and is no longer exposed via SQLObject. The parameter is still available for those writing Python 2
compatible code.

Python 3 and MySQL

SQLObject is tested using mysqlclient as the database driver on Python 3. Note that the default encoding of MySQL
databases is latin1, which can cause problems with general Unicode strings. We recommend specifying the character
set as utf8 when using MySQL to protect against these issues.

1.5. SQLObject and Python 3 9

https://pypi.python.org/pypi/mysqlclient

SQLObject Documentation, Release 3.3.0

Using databases created with SQLObject and Python 2 in Python 3

For most cases, things should just work as before. The only issues should around UnicodeCol, as how this is handled
has changed.

SQLite

The Python 3 sqlite driver expects Unicode columns to be encoded using utf8. Columns created using the default
encoding on Python 2 should work fine, but columns created with a different encoding set using the dbEncoding
parameter may cause problems.

Postgres

Postgres’ behaviour is similar to sqlite. Columns created using the default encoding on Python 2 should work fine, but
columns created with a different encoding set using the dbEncoding may cause problems.

MySQL

For MySQL, the results depend on whether the Python 2 database was using MySQLdb’s Unicode mode or not.

If a character set was specified for the database using the charset parameter, such as:

mysql:///localhost/test?charset=latin1

Things should work provided the same character set is specified when using Python 3.

If a character set wasn’t specified, then things may work if the character set is set to match the dbEncoding parameter
used when defining the UnicodeCol.

SQLObject

Contents:

• SQLObject

– Credits

– License

– Introduction

– Requirements

– Compared To Other Database Wrappers

– Using SQLObject: An Introduction

* Declaring a Connection

* Declaring the Class

* Using the Class

* Selecting Multiple Objects

10 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

· q-magic

· selectBy Method

* Lazy Updates

* One-to-Many Relationships

* Many-to-Many Relationships

* Selecting Objects Using Relationships

* Class sqlmeta

· Using sqlmeta

· j-magic

* SQLObject Class

* Customizing the Objects

· Initializing the Objects

· Adding Magic Attributes (properties)

· Overriding Column Attributes

· Undefined attributes

– Reference

* Col Class: Specifying Columns

· Column Types

* Relationships Between Classes/Tables

· ForeignKey

· MultipleJoin and SQLMultipleJoin: One-to-Many

· RelatedJoin and SQLRelatedJoin: Many-to-Many

· SingleJoin: One-to-One

* Connection pooling

* Transactions

* Automatic Schema Generation

· Indexes

· Creating and Dropping Tables

– Dynamic Classes

* Automatic Class Generation

* Runtime Column and Join Changes

– Legacy Database Schemas

* SQLObject requirements

· Workaround for primary keys made up of multiple columns

* Changing the Naming Style

1.6. SQLObject 11

SQLObject Documentation, Release 3.3.0

* Irregular Naming

* Non-Integer Keys

– DBConnection: Database Connections

* MySQL

* Postgres

* SQLite

* Firebird

* Sybase

* MAX DB

* MS SQL Server

– Events (signals)

– Exported Symbols

* LEFT JOIN and other JOINs

* How can I join a table with itself?

* Can I use a JOIN() with aliases?

* Subqueries (subselects)

* Utilities

* SQLBuilder

Credits

SQLObject is by Ian Bicking (ianb@colorstudy.com) and Contributors. The website is sqlobject.org.

License

The code is licensed under the Lesser General Public License (LGPL).

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

Introduction

SQLObject is an object-relational mapper for Python programming language. It allows you to translate RDBMS table
rows into Python objects, and manipulate those objects to transparently manipulate the database.

In using SQLObject, you will create a class definition that will describe how the object translates to the database table.
SQLObject will produce the code to access the database, and update the database with your changes. The generated
interface looks similar to any other interface, and callers need not be aware of the database backend.

SQLObject also includes a novel feature to avoid generating, textually, your SQL queries. This also allows non-SQL
databases to be used with the same query syntax.

12 Chapter 1. Documentation

mailto:ianb@colorstudy.com
http://sqlobject.org
https://www.gnu.org/copyleft/lesser.html
https://www.python.org/

SQLObject Documentation, Release 3.3.0

Requirements

Currently SQLObject supports MySQL via MySQLdb aka MySQL-python (called mysqlclient for Python 3), MySQL
Connector, oursql, PyMySQL, PyODBC and PyPyODBC. For PostgreSQL psycopg2 or psycopg1 are recommended;
PyGreSQL, py-postgresql, PyODBC and PyPyODBC are supported but have problems (not all tests passed). SQLite
has a built-in driver or PySQLite. Firebird is supported via fdb or kinterbasdb; pyfirebirdsql is supported but has
problems. MAX DB (also known as SAP DB) is supported via sapdb. Sybase via Sybase. MSSQL Server via pymssql
(+ FreeTDS) or adodbapi (Win32).

Python 2.6, 2.7 or 3.4+ is required.

Compared To Other Database Wrappers

There are several object-relational mappers (ORM) for Python. We honestly can’t comment deeply on the quality of
those packages, but we’ll try to place SQLObject in perspective.

Objects have built-in magic – setting attributes has side effects (it changes the database), and defining classes has side
effects (through the use of metaclasses). Attributes are generally exposed, not marked private, knowing that they can
be made dynamic or write-only later.

SQLObject creates objects that feel similar to normal Python objects. An attribute attached to a column doesn’t look
different than an attribute that’s attached to a file, or an attribute that is calculated. It is a specific goal that you be able
to change the database without changing the interface, including changing the scope of the database, making it more
or less prominent as a storage mechanism.

This is in contrast to some ORMs that provide a dictionary-like interface to the database (for example, PyDO). The
dictionary interface distinguishes the row from a normal Python object. We also don’t care for the use of strings where
an attribute seems more natural – columns are limited in number and predefined, just like attributes. (Note: newer
version of PyDO apparently allow attribute access as well)

SQLObject is, to my knowledge, unique in using metaclasses to facilitate this seamless integration. Some other ORMs
use code generation to create an interface, expressing the schema in a CSV or XML file (for example, MiddleKit, part
of Webware). By using metaclasses you are able to comfortably define your schema in the Python source code. No
code generation, no weird tools, no compilation step.

SQLObject provides a strong database abstraction, allowing cross-database compatibility (so long as you don’t sidestep
SQLObject).

SQLObject has joins, one-to-many, and many-to-many, something which many ORMs do not have. The join system
is also intended to be extensible.

You can map between database names and Python attribute and class names; often these two won’t match, or the
database style would be inappropriate for a Python attribute. This way your database schema does not have to be
designed with SQLObject in mind, and the resulting classes do not have to inherit the database’s naming schemes.

Using SQLObject: An Introduction

Let’s start off quickly. We’ll generally just import everything from the sqlobject class:

>>> from sqlobject import *

Declaring a Connection

The connection URI must follow the standard URI syntax:

1.6. SQLObject 13

https://www.mysql.com/
https://sourceforge.net/projects/mysql-python/
https://pypi.python.org/pypi/mysqlclient
https://pypi.python.org/pypi/mysql-connector
https://pypi.python.org/pypi/mysql-connector
https://github.com/python-oursql/oursql
https://github.com/PyMySQL/PyMySQL/
https://pypi.python.org/pypi/pyodbc
https://pypi.python.org/pypi/pypyodbc
https://postgresql.org
http://initd.org/psycopg/
http://www.pygresql.org/
https://pypi.python.org/pypi/py-postgresql
https://pypi.python.org/pypi/pyodbc
https://pypi.python.org/pypi/pypyodbc
https://sqlite.org/
https://github.com/ghaering/pysqlite
http://www.firebirdsql.org/en/python-driver/
http://www.firebirdsql.org/en/devel-python-driver/
http://kinterbasdb.sourceforge.net/
https://pypi.python.org/pypi/firebirdsql
http://maxdb.sap.com/
http://maxdb.sap.com/doc/7_8/50/01923f25b842438a408805774f6989/frameset.htm
http://www.object-craft.com.au/projects/sybase/
http://www.microsoft.com/sql/
http://www.pymssql.org/en/latest/index.html
http://www.freetds.org/
http://adodbapi.sourceforge.net/
http://skunkweb.sourceforge.net/pydo.html
http://webware.sourceforge.net/Webware/MiddleKit/Docs/
http://webware.sourceforge.net/Webware/Docs/

SQLObject Documentation, Release 3.3.0

scheme://[user[:password]@]host[:port]/database[?parameters]

Scheme is one of sqlite, mysql, postgres, firebird, interbase, maxdb, sapdb, mssql, sybase.

Examples:

mysql://user:password@host/database
mysql://host/database?debug=1
postgres://user@host/database?debug=&cache=
postgres:///full/path/to/socket/database
postgres://host:5432/database
sqlite:///full/path/to/database
sqlite:/C:/full/path/to/database
sqlite:/:memory:

Parameters are: debug (default: False), debugOutput (default: False), cache (default: True), autoCommit (de-
fault: True), debugThreading (default: False), logger (default: None), loglevel (default: None), schema
(default: None).

If you want to pass True value in a connection URI - pass almost any non-empty string, especially yes, true, on or
1; an empty string or no, false, off or 0 for False.

There are also connection-specific parameters, they are listed in the appropriate sections.

Lets first set up a connection:

>>> import os
>>> db_filename = os.path.abspath('data.db')
>>> connection_string = 'sqlite:' + db_filename
>>> connection = connectionForURI(connection_string)
>>> sqlhub.processConnection = connection

The sqlhub.processConnection assignment means that all classes will, by default, use this connection we’ve
just set up.

Declaring the Class

We’ll develop a simple addressbook-like database. We could create the tables ourselves, and just have SQLObject
access those tables, but let’s have SQLObject do that work. First, the class:

>>> class Person(SQLObject):
...
... firstName = StringCol()
... middleInitial = StringCol(length=1, default=None)
... lastName = StringCol()

Many basic table schemas won’t be any more complicated than that. firstName, middleInitial, and lastName are all
columns in the database. The general schema implied by this class definition is:

CREATE TABLE person (
id INT PRIMARY KEY AUTO_INCREMENT,
first_name TEXT,
middle_initial CHAR(1),
last_name TEXT

);

This is for SQLite or MySQL. The schema for other databases looks slightly different (especially the id column).
You’ll notice the names were changed from mixedCase to underscore_separated – this is done by the style object.

14 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

There are a variety of ways to handle names that don’t fit conventions (see Irregular Naming). Now we’ll create the
table in the database:

>>> Person.createTable()
[]

We can change the type of the various columns by using something other than StringCol, or using different arguments.
More about this in Column Types.

You’ll note that the id column is not given in the class definition, it is implied. For MySQL databases it should be de-
fined as INT PRIMARY KEY AUTO_INCREMENT, in Postgres SERIAL PRIMARY KEY, in SQLite as INTEGER
PRIMARY KEY AUTOINCREMENT, and for other backends accordingly. You can’t use tables with SQLObject that
don’t have a single primary key, and you must treat that key as immutable (otherwise you’ll confuse SQLObject
terribly).

You can override the id name in the database, but it is always called .id from Python.

Using the Class

Now that you have a class, how will you use it? We’ll be considering the class defined above.

To create a new object (and row), use class instantiation, like:

>>> Person(firstName="John", lastName="Doe")
<Person 1 firstName='John' middleInitial=None lastName='Doe'>

Note: In SQLObject NULL/None does not mean default. NULL is a funny thing; it mean very different things
in different contexts and to different people. Sometimes it means “default”, sometimes “not applicable”, sometimes
“unknown”. If you want a default, NULL or otherwise, you always have to be explicit in your class definition.

Also note that the SQLObject default isn’t the same as the database’s default (SQLObject never uses the database’s
default).

If you had left out firstName or lastName you would have gotten an error, as no default was given for these
columns (middleInitial has a default, so it will be set to NULL, the database equivalent of None).

You can use the class method .get() to fetch instances that already exist:

>>> Person.get(1)
<Person 1 firstName='John' middleInitial=None lastName='Doe'>

When you create an object, it is immediately inserted into the database. SQLObject uses the database as immediate
storage, unlike some other systems where you explicitly save objects into a database.

Here’s a longer example of using the class:

>>> p = Person.get(1)
>>> p
<Person 1 firstName='John' middleInitial=None lastName='Doe'>
>>> p.firstName
'John'
>>> p.middleInitial = 'Q'
>>> p.middleInitial
'Q'
>>> p2 = Person.get(1)
>>> p2
<Person 1 firstName='John' middleInitial='Q' lastName='Doe'>

1.6. SQLObject 15

SQLObject Documentation, Release 3.3.0

>>> p is p2
True

Columns are accessed like attributes. (This uses the property feature of Python, so that retrieving and setting
these attributes executes code). Also note that objects are unique – there is generally only one Person instance of a
particular id in memory at any one time. If you ask for a person by a particular ID more than once, you’ll get back the
same instance. This way you can be sure of a certain amount of consistency if you have multiple threads accessing the
same data (though of course across processes there can be no sharing of an instance). This isn’t true if you’re using
transactions, which are necessarily isolated.

To get an idea of what’s happening behind the surface, we’ll give the same actions with the SQL that is sent, along
with some commentary:

>>> # This will make SQLObject print out the SQL it executes:
>>> Person._connection.debug = True
>>> p = Person(firstName='Bob', lastName='Hope')
1/QueryIns: INSERT INTO person (first_name, middle_initial, last_name) VALUES ('Bob
→˓', NULL, 'Hope')
1/QueryR : INSERT INTO person (first_name, middle_initial, last_name) VALUES ('Bob
→˓', NULL, 'Hope')
1/COMMIT : auto
1/QueryOne: SELECT first_name, middle_initial, last_name FROM person WHERE ((person.
→˓id) = (2))
1/QueryR : SELECT first_name, middle_initial, last_name FROM person WHERE ((person.
→˓id) = (2))
1/COMMIT : auto

>>> p
<Person 2 firstName='Bob' middleInitial=None lastName='Hope'>
>>> p.middleInitial = 'Q'
1/Query : UPDATE person SET middle_initial = ('Q') WHERE id = (2)
1/QueryR : UPDATE person SET middle_initial = ('Q') WHERE id = (2)
1/COMMIT : auto

>>> p2 = Person.get(1)
>>> # Note: no database access, since we're just grabbing the same
>>> # instance we already had.

Hopefully you see that the SQL that gets sent is pretty clear and predictable. To view the SQL being sent, add ?
debug=true to your connection URI, or set the debug attribute on the connection, and all SQL will be printed to
the console. This can be reassuring, and we would encourage you to try it.

As a small optimization, instead of assigning each attribute individually, you can assign a number of them using the
set method, like:

>>> p.set(firstName='Robert', lastName='Hope Jr.')

This will send only one UPDATE statement. You can also use set with non-database properties (there’s no benefit, but
it helps hide the difference between database and non-database attributes).

Selecting Multiple Objects

While the full power of all the kinds of joins you can do with a relational database are not revealed in SQLObject, a
simple SELECT is available.

select is a class method, and you call it like (with the SQL that’s generated):

>>> Person._connection.debug = True
>>> peeps = Person.select(Person.q.firstName=="John")

16 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

>>> list(peeps)
1/Select : SELECT person.id, person.first_name, person.middle_initial, person.last_
→˓name FROM person WHERE ((person.first_name) = ('John'))
1/QueryR : SELECT person.id, person.first_name, person.middle_initial, person.last_
→˓name FROM person WHERE ((person.first_name) = ('John'))
1/COMMIT : auto

[<Person 1 firstName='John' middleInitial='Q' lastName='Doe'>]

This example returns everyone with the first name John.

Queries can be more complex:

>>> peeps = Person.select(
... OR(Person.q.firstName == "John",
... LIKE(Person.q.lastName, "%Hope%")))
>>> list(peeps)
1/Select : SELECT person.id, person.first_name, person.middle_initial, person.last_
→˓name FROM person WHERE (((person.first_name) = ('John')) OR (person.last_name LIKE (
→˓'%Hope%')))
1/QueryR : SELECT person.id, person.first_name, person.middle_initial, person.last_
→˓name FROM person WHERE (((person.first_name) = ('John')) OR (person.last_name LIKE (
→˓'%Hope%')))
1/COMMIT : auto

[<Person 1 firstName='John' middleInitial='Q' lastName='Doe'>, <Person 2 firstName=
→˓'Robert' middleInitial='Q' lastName='Hope Jr.'>]

You’ll note that classes have an attribute q, which gives access to special objects for constructing query clauses. All
attributes under q refer to column names and if you construct logical statements with these it’ll give you the SQL for
that statement. You can also create your SQL more manually:

>>> Person._connection.debug = False # Need for doctests
>>> peeps = Person.select("""person.first_name = 'John' AND
... person.last_name LIKE 'D%'""")

You should use MyClass.sqlrepr to quote any values you use if you create SQL manually (quoting is automatic if you
use q). You can use the keyword arguments orderBy to create ORDER BY in the select statements: orderBy takes a
string, which should be the database name of the column, or a column in the form Person.q.firstName. You
can use "-colname" or DESC(Person.q.firstName) to specify descending order (this is translated to DESC,
so it works on non-numeric types as well), or call MyClass.select().reversed(). orderBy can also take a
list of columns in the same format: ["-weight", "name"].

You can use the sqlmeta class variable defaultOrder to give a default ordering for all selects. To get an unordered
result when defaultOrder is used, use orderBy=None. Select results are generators, which are lazily evaluated.
So the SQL is only executed when you iterate over the select results, or if you use list() to force the result to be
executed. When you iterate over the select results, rows are fetched one at a time. This way you can iterate over large
results without keeping the entire result set in memory. You can also do things like .reversed() without fetching
and reversing the entire result – instead, SQLObject can change the SQL that is sent so you get equivalent results.

You can also slice select results. This modifies the SQL query, so peeps[:10] will result in LIMIT 10 being
added to the end of the SQL query. If the slice cannot be performed in the SQL (e.g., peeps[:-10]), then the select
is executed, and the slice is performed on the list of results. This will generally only happen when you use negative
indexes.

In certain cases, you may get a select result with an object in it more than once, e.g., in some joins. If you don’t
want this, you can add the keyword argument MyClass.select(..., distinct=True), which results in a
SELECT DISTINCT call.

You can get the length of the result without fetching all the results by calling count on the result object, like

1.6. SQLObject 17

SQLObject Documentation, Release 3.3.0

MyClass.select().count(). A COUNT(*) query is used – the actual objects are not fetched from the
database. Together with slicing, this makes batched queries easy to write:

start = 20 size = 10 query = Table.select() results = query[start:start+size] total = query.count() print
“Showing page %i of %i” % (start/size + 1, total/size + 1)

Note: There are several factors when considering the efficiency of this kind of batching, and it depends very much
how the batching is being used. Consider a web application where you are showing an average of 100 results, 10 at
a time, and the results are ordered by the date they were added to the database. While slicing will keep the database
from returning all the results (and so save some communication time), the database will still have to scan through the
entire result set to sort the items (so it knows which the first ten are), and depending on your query may need to scan
through the entire table (depending on your use of indexes). Indexes are probably the most important way to improve
importance in a case like this, and you may find caching to be more effective than slicing.

In this case, caching would mean retrieving the complete results. You can use list(MyClass.select(...)) to
do this. You can save these results for some limited period of time, as the user looks through the results page by page.
This means the first page in a search result will be slightly more expensive, but all later pages will be very cheap.

For more information on the where clause in the queries, see the SQLBuilder documentation.

q-magic

Please note the use of the q attribute in examples above. q is an object that returns special objects to construct SQL
expressions. Operations on objects returned by q-magic are not evaluated immediately but stored in a manner similar
to symbolic algebra; the entire expression is evaluated by constructing a string that is sent then to the backend.

For example, for the code:

>>> peeps = Person.select(Person.q.firstName=="John")

SQLObject doesn’t evaluate firstName but stores the expression:

Person.q.firstName==”John”

Later SQLObject converts it to the string first_name = 'John' and passes the string to the backend.

selectBy Method

An alternative to .select is .selectBy. It works like:

>>> peeps = Person.selectBy(firstName="John", lastName="Doe")

Each keyword argument is a column, and all the keyword arguments are ANDed together. The return value is a
SelectResults, so you can slice it, count it, order it, etc.

Lazy Updates

By default SQLObject sends an UPDATE to the database for every attribute you set, or every time you call .set(). If
you want to avoid this many updates, add lazyUpdate = True to your class sqlmeta definition. Then updates will
only be written to the database when you call inst.syncUpdate() or inst.sync(): .sync() also refetches
the data from the database, which .syncUpdate() does not do.

When enabled instances will have a property .sqlmeta.dirty, which indicates if there are pending updates.
Inserts are still done immediately; there’s no way to do lazy inserts at this time.

18 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

One-to-Many Relationships

An address book is nothing without addresses.

First, let’s define the new address table. People can have multiple addresses, of course:

>>> class Address(SQLObject):
...
... street = StringCol()
... city = StringCol()
... state = StringCol(length=2)
... zip = StringCol(length=9)
... person = ForeignKey('Person')
>>> Address.createTable()
[]

Note the column person = ForeignKey("Person"). This is a reference to a Person object. We refer to other
classes by name (with a string). In the database there will be a person_id column, type INT, which points to the
person column.

Note: The reason SQLObject uses strings to refer to other classes is because the other class often does not yet exist.
Classes in Python are created, not declared; so when a module is imported the commands are executed. class is just
another command; one that creates a class and assigns it to the name you give.

If class A referred to class B, but class B was defined below A in the module, then when the A class was created
(including creating all its column attributes) the B class simply wouldn’t exist. By referring to classes by name, we
can wait until all the required classes exist before creating the links between classes.

We want an attribute that gives the addresses for a person. In a class definition we’d do:

class Person(SQLObject):
...
addresses = MultipleJoin('Address')

But we already have the class. We can add this to the class in-place:

>>> Person.sqlmeta.addJoin(MultipleJoin('Address',
... joinMethodName='addresses'))

Note: In almost all cases you can modify SQLObject classes after they’ve been created. Having attributes that contain
*Col objects in the class definition is equivalent to calling certain class methods (like addColumn()).

Now we can get the backreference with aPerson.addresses, which returns a list. An example:

>>> p.addresses
[]
>>> Address(street='123 W Main St', city='Smallsville',
... state='MN', zip='55407', person=p)
<Address 1 ...>
>>> p.addresses
[<Address 1 ...>]

Note: MultipleJoin, as well as RelatedJoin, returns a list of results. It is often preferable to get a SelectResults
object instead, in which case you should use SQLMultipleJoin and SQLRelatedJoin. The declaration of these joins is

1.6. SQLObject 19

SQLObject Documentation, Release 3.3.0

unchanged from above, but the returned iterator has many additional useful methods.

Many-to-Many Relationships

For this example we will have user and role objects. The two have a many-to-many relationship, which is represented
with the RelatedJoin.

>>> class User(SQLObject):
...
... class sqlmeta:
... # user is a reserved word in some databases, so we won't
... # use that for the table name:
... table = "user_table"
...
... username = StringCol(alternateID=True, length=20)
... # We'd probably define more attributes, but we'll leave
... # that exercise to the reader...
...
... roles = RelatedJoin('Role')

>>> class Role(SQLObject):
...
... name = StringCol(alternateID=True, length=20)
...
... users = RelatedJoin('User')

>>> User.createTable()
[]
>>> Role.createTable()
[]

Note: The sqlmeta class is used to store different kinds of metadata (and override that metadata, like table). This is
new in SQLObject 0.7. See the section Class sqlmeta for more information on how it works and what attributes have
special meanings.

And usage:

>>> bob = User(username='bob')
>>> tim = User(username='tim')
>>> jay = User(username='jay')
>>> admin = Role(name='admin')
>>> editor = Role(name='editor')
>>> bob.addRole(admin)
>>> bob.addRole(editor)
>>> tim.addRole(editor)
>>> bob.roles
[<Role 1 name='admin'>, <Role 2 name='editor'>]
>>> tim.roles
[<Role 2 name='editor'>]
>>> jay.roles
[]
>>> admin.users
[<User 1 username='bob'>]

20 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

>>> editor.users
[<User 1 username='bob'>, <User 2 username='tim'>]

In the process an intermediate table is created, role_user, which references both of the other classes. This table
is never exposed as a class, and its rows do not have equivalent Python objects – this hides some of the nuisance of a
many-to-many relationship.

By the way, if you want to create an intermediate table of your own, maybe with additional columns, be aware that the
standard SQLObject methods add/removesomething may not work as expected. Assuming that you are providing the
join with the correct joinColumn and otherColumn arguments, be aware it’s not possible to insert extra data via such
methods, nor will they set any default value.

Let’s have an example: in the previous User/Role system, you’re creating a UserRole intermediate table, with the
two columns containing the foreign keys for the MTM relationship, and an additional DateTimeCol defaulting to
datetime.datetime.now : that column will stay empty when adding roles with the addRole method. If you want to get
a list of rows from the intermediate table directly add a MultipleJoin to User or Role class.

You may notice that the columns have the extra keyword argument alternateID. If you use alternateID=True,
this means that the column uniquely identifies rows – like a username uniquely identifies a user. This identifier is in
addition to the primary key (id), which is always present.

Note: SQLObject has a strong requirement that the primary key be unique and immutable. You cannot change the
primary key through SQLObject, and if you change it through another mechanism you can cause inconsistency in any
running SQLObject program (and in your data). For this reason meaningless integer IDs are encouraged – something
like a username that could change in the future may uniquely identify a row, but it may be changed in the future. So
long as it is not used to reference the row, it is also safe to change it in the future.

A alternateID column creates a class method, like byUsername for a column named username (or you can use the
alternateMethodName keyword argument to override this). Its use:

>>> User.byUsername('bob')
<User 1 username='bob'>
>>> Role.byName('admin')
<Role 1 name='admin'>

Selecting Objects Using Relationships

An select expression can refer to multiple classes, like:

>>> Person._connection.debug = False # Needed for doctests
>>> peeps = Person.select(
... AND(Address.q.personID == Person.q.id,
... Address.q.zip.startswith('504')))
>>> list(peeps)
[]
>>> peeps = Person.select(
... AND(Address.q.personID == Person.q.id,
... Address.q.zip.startswith('554')))
>>> list(peeps)
[<Person 2 firstName='Robert' middleInitial='Q' lastName='Hope Jr.'>]

It is also possible to use the q attribute when constructing complex queries, like:

>>> Person._connection.debug = False # Needed for doctests
>>> peeps = Person.select("""address.person_id = person.id AND

1.6. SQLObject 21

SQLObject Documentation, Release 3.3.0

... address.zip LIKE '504%'""",

... clauseTables=['address'])

Note that you have to use clauseTables if you use tables besides the one you are selecting from. If you use the q
attributes SQLObject will automatically figure out what extra classes you might have used.

Class sqlmeta

This new class is available starting with SQLObject 0.7 and allows specifying metadata in a clearer way, without
polluting the class namespace with more attributes.

There are some special attributes that can be used inside this class that will change the behavior of the class that
contains it. Those values are:

table: The name of the table in the database. This is derived from style and the class name if no explicit name
is given. If you don’t give a name and haven’t defined an alternative style, then the standard MixedCase to
mixed_case translation is performed.

idName: The name of the primary key column in the database. This is derived from style if no explicit name is
given. The default name is id.

idType: A function that coerces/normalizes IDs when setting IDs. This is int by default (all IDs are normalized to
integers).

style: A style object – this object allows you to use other algorithms for translating between Python attribute and class
names, and the database’s column and table names. See Changing the Naming Style for more. It is an instance
of the IStyle interface.

lazyUpdate: A boolean (default false). If true, then setting attributes on instances (or using inst.set(.) will not
send UPDATE queries immediately (you must call inst.syncUpdates() or inst.sync() first).

defaultOrder: When selecting objects and not giving an explicit order, this attribute indicates the default ordering. It
is like this value is passed to .select() and related methods; see those method’s documentation for details.

cacheValues: A boolean (default true). If true, then the values in the row are cached as long as the instance is kept
(and inst.expire() is not called).

If set to False then values for attributes from the database won’t be cached. So every time you access an
attribute in the object the database will be queried for a value, i.e., a SELECT will be issued. If you want to
handle concurrent access to the database from multiple processes then this is probably the way to do so.

registry: Because SQLObject uses strings to relate classes, and these strings do not respect module names, name
clashes will occur if you put different systems together. This string value serves as a namespace for classes.

fromDatabase: A boolean (default false). If true, then on class creation the database will be queried for the table’s
columns, and any missing columns (possible all columns) will be added automatically. Please be warned that
not all connections fully implement database introspection.

dbEncoding: UnicodeCol looks up sqlmeta.dbEncoding if column.dbEncoding is None (if sqlmeta.dbEncoding is
None UnicodeCol looks up connection.dbEncoding and if dbEncoding isn’t defined anywhere it defaults to
"utf-8"). For Python 3 there must be one encoding for connection - do not define different columns with
different encodings, it’s not implemented.

The following attributes provide introspection but should not be set directly - see Runtime Column and Join Changes
for dynamically modifying these class elements.

columns: A dictionary of {columnName: anSOColInstance}. You can get information on the columns via
this read-only attribute.

22 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

columnList: A list of the values in columns. Sometimes a stable, ordered version of the columns is necessary; this
is used for that.

columnDefinitions: A dictionary like columns, but contains the original column definitions (which are not class-
specific, and have no logic).

joins: A list of all the Join objects for this class.

indexes: A list of all the indexes for this class.

createSQL: SQL queries run after table creation. createSQL can be a string with a single SQL command, a list of
SQL commands, or a dictionary with keys that are dbNames and values that are either single SQL command
string or a list of SQL commands. This is usually for ALTER TABLE commands.

There is also one instance attribute:

expired: A boolean. If true, then the next time this object’s column attributes are accessed a query will be run.

While in previous versions of SQLObject those attributes were defined directly at the class that will map your database
data to Python and all of them were prefixed with an underscore, now it is suggested that you change your code to this
new style. The old way was removed in SQLObject 0.8.

Please note: when using InheritedSQLObject, sqlmeta attributes don’t get inherited, e.g. you can’t access via the
sqlmeta.columns dictionary the parent’s class column objects.

Using sqlmeta

To use sqlmeta you should write code like this example:

class MyClass(SQLObject):

class sqlmeta:
lazyUpdate = True
cacheValues = False

columnA = StringCol()
columnB = IntCol()

def _set_attr1(self, value):
do something with value

def _get_attr1(self):
do something to retrieve value

The above definition is creating a table my_class (the name may be different if you change the style used) with
two columns called columnA and columnB. There’s also a third field that can be accessed using MyClass.attr1.
The sqlmeta class is changing the behavior of MyClass so that it will perform lazy updates (you’ll have to call the
.sync() method to write the updates to the database) and it is also telling that MyClass won’t have any cache, so
that every time you ask for some information it will be retrieved from the database.

j-magic

There is a magic attribute j similar to q with attributes for ForeignKey and SQLMultipleJoin/SQLRelatedJoin, provid-
ing a shorthand for the SQLBuilder join expressions to traverse the given relationship. For example, for a ForeignKey
AClass.j.someB is equivalent to (AClass.q.someBID==BClass.q.id), as is BClass.j.someAs for the matching SQLMul-
tipleJoin.

1.6. SQLObject 23

SQLObject Documentation, Release 3.3.0

SQLObject Class

There is one special attribute - _connection. It is the connection defined for the table.

_connection: The connection object to use, from DBConnection. You can also set the variable __connection__ in the
enclosing module and it will be picked up (be sure to define __connection__ before your class). You can also
pass a connection object in at instance creation time, as described in transactions.

If you have defined sqlhub.processConnection then this attribute can be omitted from your class and the sqlhub
will be used instead. If you have several classes using the same connection that might be an advantage, besides
saving a lot of typing.

Customizing the Objects

While we haven’t done so in the examples, you can include your own methods in the class definition. Writing your
own methods should be obvious enough (just do so like in any other class), but there are some other details to be aware
of.

Initializing the Objects

There are two ways SQLObject instances can come into existence: they can be fetched from the database, or they can
be inserted into the database. In both cases a new Python object is created. This makes the role of __init__ a little
confusing.

In general, you should not touch __init__. Instead use the _init method, which is called after an object is fetched or in-
serted. This method has the signature _init(self, id, connection=None, selectResults=None),
though you may just want to use _init(self, *args, **kw). Note: don’t forget to call SQLObject.
_init(self, *args, **kw) if you override the method!

Adding Magic Attributes (properties)

You can use all the normal techniques for defining methods in this class, including classmethod, staticmethod, and
property, but you can also use a shortcut. If you have a method that’s name starts with _set_, _get_, _del_, or
doc, it will be used to create a property. So, for instance, say you have images stored under the ID of the person in
the /var/people/images directory:

class Person(SQLObject):
...

def imageFilename(self):
return 'images/person-%s.jpg' % self.id

def _get_image(self):
if not os.path.exists(self.imageFilename()):

return None
f = open(self.imageFilename())
v = f.read()
f.close()
return v

def _set_image(self, value):
assume we get a string for the image
f = open(self.imageFilename(), 'w')
f.write(value)

24 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

f.close()

def _del_image(self, value):
We usually wouldn't include a method like this, but for
instructional purposes...
os.unlink(self.imageFilename())

Later, you can use the .image property just like an attribute, and the changes will be reflected in the filesystem by
calling these methods. This is a good technique for information that is better to keep in files as opposed to the database
(such as large, opaque data like images).

You can also pass an image keyword argument to the constructor or the set method, like Person(...,
image=imageText).

All of the methods (_get_, _set_, etc) are optional – you can use any one of them without using the others. So you
could define just a _get_attr method so that attr was read-only.

Overriding Column Attributes

It’s a little more complicated if you want to override the behavior of an database column attribute. For instance,
imagine there’s special code you want to run whenever someone’s name changes. In many systems you’d do some
custom code, then call the superclass’s code. But the superclass (SQLObject) doesn’t know anything about the
column in your subclass. It’s even worse with properties.

SQLObject creates methods like _set_lastName for each of your columns, but again you can’t use this, since
there’s no superclass to reference (and you can’t write SQLObject._set_lastName(...), because the SQLOb-
ject class doesn’t know about your class’s columns). You want to override that _set_lastName method yourself.

To deal with this, SQLObject creates two methods for each getter and setter, for example: _set_lastName and
_SO_set_lastName. So to intercept all changes to lastName:

class Person(SQLObject):
lastName = StringCol()
firstName = StringCol()

def _set_lastName(self, value):
self.notifyLastNameChange(value)
self._SO_set_lastName(value)

Or perhaps you want to constrain a phone numbers to be actual digits, and of proper length, and make the formatting
nice:

import re

class PhoneNumber(SQLObject):
phoneNumber = StringCol(length=30)

_garbageCharactersRE = re.compile(r'[\-\.\(\)]')
_phoneNumberRE = re.compile(r'^[0-9]+$')
def _set_phoneNumber(self, value):

value = self._garbageCharactersRE.sub('', value)
if not len(value) >= 10:

raise ValueError(
'Phone numbers must be at least 10 digits long')

if not self._phoneNumberRE.match(value):
raise ValueError, 'Phone numbers can contain only digits'

self._SO_set_phoneNumber(value)

1.6. SQLObject 25

SQLObject Documentation, Release 3.3.0

def _get_phoneNumber(self):
value = self._SO_get_phoneNumber()
number = '(%s) %s-%s' % (value[0:3], value[3:6], value[6:10])
if len(value) > 10:

number += ' ext.%s' % value[10:]
return number

Note: You should be a little cautious when modifying data that gets set in an attribute. Generally someone using
your class will expect that the value they set the attribute to will be the same value they get back. In this example we
removed some of the characters before putting it in the database, and reformatted it on the way out. One advantage of
methods (as opposed to attribute access) is that the programmer is more likely to expect this disconnect.

Also note while these conversions will take place when getting and setting the column, in queries the conversions
will not take place. So if you convert the value from a “Pythonic” representation to a “SQLish” representation, your
queries (when using .select() and .selectBy()) will have to be in terms of the SQL/Database representation
(as those commands generate SQL that is run on the database).

Undefined attributes

There’s one more thing worth telling, because you may something get strange results when making a typo. SQLObject
won’t ever complain or raise any error when setting a previously undefined attribute; it will simply set it, without
making any change to the database, i.e: it will work as any other attribute you set on any Python class, it will ‘forget’
it is a SQLObject class.

This may sometimes be a problem: if you have got a ‘name’ attribute and you you write a.namme="Victor" once,
when setting it, you’ll get no error, no warning, nothing at all, and you may get crazy at understanding why you don’t
get that value set in your DB.

Reference

The instructions above should tell you enough to get you started, and be useful for many situations. Now we’ll show
how to specify the class more completely.

Col Class: Specifying Columns

The list of columns is a list of Col objects. These objects don’t have functionality in themselves, but give you a way
to specify the column.

dbName: This is the name of the column in the database. If you don’t give a name, your Pythonic name will be
converted from mixed-case to underscore-separated.

default: The default value for this column. Used when creating a new row. If you give a callable object or function,
the function will be called, and the return value will be used. So you can give DateTimeCol.now to make the
default value be the current time. Or you can use sqlbuilder.func.NOW() to have the database use the
NOW() function internally. If you don’t give a default there will be an exception if this column isn’t specified
in the call to new.

defaultSQL: DEFAULT SQL attribute.

alternateID: This boolean (default False) indicates if the column can be used as an ID for the field (for
instance, a username), though it is not a primary key. If so a class method will be added, like

26 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

byUsername which will return that object. Use alternateMethodName if you don’t like the by* name (e.g.
alternateMethodName="username").

The column should be declared UNIQUE in your table schema.

unique: If true, when SQLObject creates a table it will declare this column to be UNIQUE.

notNone: If true, None/NULL is not allowed for this column. Useful if you are using SQLObject to create your tables.

sqlType: The SQL type for this column (like INT, BOOLEAN, etc). You can use classes (defined below) for this, but if
those don’t work it’s sometimes easiest just to use sqlType. Only necessary if SQLObject is creating your tables.

validator: formencode-like validator. Making long story short, this is an object that provides to_python() and
from_python() to validate and convert (adapt or cast) the values when they are read/written from/to the
database. You should see formencode validator documentation for more details. This validator is appended to
the end of the list of the list of column validators. If the column has a list of validators their from_python()
methods are ran from the beginnig of the list to the end; to_python() in the reverse order. That said,
from_python() method of this validator is called last, after all validators in the list; to_python() is
called first.

validator2: Another validator. It is inserted in the beginning of the list of the list of validators, i.e. its
from_python() method is called first; to_python() last.

Column Types

The ForeignKey class should be used instead of Col when the column is a reference to another table/class. It is
generally used like ForeignKey('Role'), in this instance to create a reference to a table Role. This is largely
equivalent to Col(foreignKey='Role', sqlType='INT'). Two attributes will generally be created, role,
which returns a Role instance, and roleID, which returns an integer ID for the related role.

There are some other subclasses of Col. These are used to indicate different types of columns, when SQLObject
creates your tables.

BLOBCol: A column for binary data. Presently works only with MySQL, PostgreSQL and SQLite backends.

BoolCol: Will create a BOOLEAN column in Postgres, or INT in other databases. It will also convert values to "t"/
"f" or 0/1 according to the database backend.

CurrencyCol: Equivalent to DecimalCol(size=10, precision=2). WARNING: as DecimalCol MAY
NOT return precise numbers, this column may share the same behavior. Please read the DecimalCol warn-
ing.

DateTimeCol: A date and time (usually returned as an datetime or mxDateTime object).

DateCol: A date (usually returned as an datetime or mxDateTime object).

TimeCol: A time (usually returned as an datetime or mxDateTime object).

TimestampCol: Supports MySQL TIMESTAMP type.

DecimalCol: Base-10, precise number. Uses the keyword arguments size for number of digits stored, and precision
for the number of digits after the decimal point. WARNING: it may happen that DecimalCol values, although
correctly stored in the DB, are returned as floats instead of decimals. For example, due to the type affinity
SQLite stores decimals as integers or floats (NUMERIC storage class). You should test with your database
adapter, and you should try importing the Decimal type and your DB adapter before importing SQLObject.

DecimalStringCol: Similar to DecimalCol but stores data as strings to work around problems in some drivers and
type affinity problem in SQLite. As it stores data as strings the column cannot be used in SQL expressions
(column1 + column2) and probably will has problems with ORDER BY.

1.6. SQLObject 27

http://formencode.org/
http://www.formencode.org/en/latest/Validator.html
http://formencode.org/
http://www.formencode.org/en/latest/Validator.html
http://sqlite.org/datatype3.html#affinity

SQLObject Documentation, Release 3.3.0

EnumCol: One of several string values – give the possible strings as a list, with the enumValues keyword argument.
MySQL has a native ENUM type, but will work with other databases too (storage just won’t be as efficient).

For PostgreSQL, EnumCol’s are implemented using check constraints. Due to the way PostgreSQL handles
check constraints involving NULL, specifying None as a member of an EnumCol will effectively mean that,
at the SQL level, the check constraint will be ignored (see http://archives.postgresql.org/pgsql-sql/2004-12/
msg00065.php for more details).

SetCol: Supports MySQL SET type.

FloatCol: Floats.

ForeignKey: A key to another table/class. Use like user = ForeignKey('User'). It can check for referential
integrity using the keyword argument cascade, please see ForeignKey for details.

IntCol: Integers.

JsonbCol: A column for jsonb objects. Only supported on Postgres. Any Python object that can be serialized with
json.dumps can be stored.

JSONCol: A universal json column that converts simple Python objects (None, bool, int, float, long, dict, list,
str/unicode to/from JSON using json.dumps/loads. A subclass of StringCol.

PickleCol: An extension of BLOBCol; this column can store/retrieve any Python object; it actually (un)pickles the
object from/to string and stores/retrieves the string. One can get and set the value of the column but cannot
search (use it in WHERE).

StringCol: A string (character) column. Extra keywords:

length: If given, the type will be something like VARCHAR(length). If not given, then TEXT is assumed
(i.e., lengthless).

varchar: A boolean; if you have a length, differentiates between CHAR and VARCHAR, default True, i.e., use
VARCHAR.

UnicodeCol: A subclass of StringCol. Also accepts a dbEncoding keyword argument, it defaults to None which
means to lookup dbEncoding in sqlmeta and connection, and if dbEncoding isn’t defined anywhere it defaults
to "utf-8". Values coming in and out from the database will be encoded and decoded. Note: there are some
limitations on using UnicodeCol in queries:

• only simple q-magic fields are supported; no expressions;

• only == and != operators are supported;

The following code works:

MyTable.select(u'value' == MyTable.q.name)
MyTable.select(MyTable.q.name != u'value')
MyTable.select(OR(MyTable.q.col1 == u'value1', MyTable.q.col2 != u'value2'))
MyTable.selectBy(name = u'value')
MyTable.selectBy(col1=u'value1', col2=u'value2')
MyTable.byCol1(u'value1') # if col1 is an alternateID

The following does not work:

MyTable.select((MyTable.q.name + MyTable.q.surname) == u'value')

In that case you must apply the encoding yourself:

MyTable.select((MyTable.q.name + MyTable.q.surname) == u'value'.
→˓encode(dbEncoding))

UuidCol: A column for UUID. On Postgres uses ‘UUID’ data type, on all other backends uses VARCHAR(36).

28 Chapter 1. Documentation

http://archives.postgresql.org/pgsql-sql/2004-12/msg00065.php
http://archives.postgresql.org/pgsql-sql/2004-12/msg00065.php

SQLObject Documentation, Release 3.3.0

Relationships Between Classes/Tables

ForeignKey

You can use the ForeignKey to handle foreign references in a table, but for back references and many-to-many rela-
tionships you’ll use joins.

ForeignKey allows you to specify referential integrity using the keyword cascade, which can have these values:

None: No action is taken on related deleted columns (this is the default). Following the Person/Address example, if
you delete the object Person with id 1 (John Doe), the Address with id 1 (123 W Main St) will be kept untouched
(with personID=1).

False: Deletion of an object that has other objects related to it using a ForeignKey will fail (sets ON DELETE
RESTRICT). Following the Person/Address example, if you delete the object Person with id 1 (John Doe) a
SQLObjectIntegrityError exception will be raised, because the Address with id 1 (123 W Main St) has a refer-
ence (personID=1) to it.

True: Deletion of an object that has other objects related to it using a ForeignKey will delete all the related objects too
(sets ON DELETE CASCADE). Following the Person/Address example, if you delete the object Person with id
1 (John Doe), the Address with id 1 (123 W Main St) will be deleted too.

‘null’: Deletion of an object that has other objects related to it using a ForeignKey will set the ForeignKey column to
NULL/None (sets ON DELETE SET NULL). Following the Person/Address example, if you delete the object
Person with id 1 (John Doe), the Address with id 1 (123 W Main St) will be kept but the reference to person will
be set to NULL/None (personID=None).

MultipleJoin and SQLMultipleJoin: One-to-Many

See One-to-Many Relationships for an example of one-to-many relationships.

MultipleJoin returns a list of results, while SQLMultipleJoin returns a SelectResults object.

Several keyword arguments are allowed to the MultipleJoin constructor:

joinColumn: The column name of the key that points to this table. So, if you have a table Product, and another
table has a column ProductNo that points to this table, then you’d use joinColumn="ProductNo".
WARNING: the argument you pass must conform to the column name in the database, not to the column in
the class. So, if you have a SQLObject containing the ProductNo column, this will probably be translated
into product_no_id in the DB (product_no is the normal uppercase- to-lowercase + underscores SQLO
Translation, the added _id is just because the column referring to the table is probably a ForeignKey, and SQLO
translates foreign keys that way). You should pass that parameter.

orderBy: Like the orderBy argument to select(), you can specify the order that the joined objects should be returned
in. defaultOrder will be used if not specified; None forces unordered results.

joinMethodName: When adding joins dynamically (using the class method addJoin), you can give the name of
the accessor for the join. It can also be created automatically, and is normally implied (i.e., addresses
= MultipleJoin(...) implies joinMethodName="addresses").

RelatedJoin and SQLRelatedJoin: Many-to-Many

See Many-to-Many Relationships for examples of using many-to-many joins.

RelatedJoin returns a list of results, while SQLRelatedJoin returns a SelectResults object.

RelatedJoin has all the keyword arguments of MultipleJoin, plus:

1.6. SQLObject 29

SQLObject Documentation, Release 3.3.0

otherColumn: Similar to joinColumn, but referring to the joined class. Same warning about column name.

intermediateTable: The name of the intermediate table which references both classes. WARNING: you should pass
the database table name, not the SQLO class representing.

addRemoveName: In the user/role example, the methods addRole(role) and removeRole(role) are created. The Role
portion of these method names can be changed by giving a string value here.

createRelatedTable: default: True. If False, then the related table won’t be automatically created; instead you
must manually create it (e.g., with explicit SQLObject classes for the joins). New in 0.7.1.

Note: Let’s suppose you have SQLObject-inherited classes Alpha and Beta, and an AlphasAndBetas used for the
many-to-many relationship. AlphasAndBetas contains the alphaIndex Foreign Key column referring to Alpha, and
the betaIndex FK column referring to Beta. if you want a ‘betas’ RelatedJoin in Alpha, you should add it to Alpha
passing ‘Beta’ (class name!) as the first parameter, then passing ‘alpha_index_id’ as joinColumn, ‘beta_index_id’ as
otherColumn, and ‘alphas_and_betas’ as intermediateTable.

An example schema that requires the use of joinColumn, otherColumn, and intermediateTable:

CREATE TABLE person (
id SERIAL,
username VARCHAR(100) NOT NULL UNIQUE

);

CREATE TABLE role (
id SERIAL,
name VARCHAR(50) NOT NULL UNIQUE

);

CREATE TABLE assigned_roles (
person INT NOT NULL,
role INT NOT NULL

);

Then the usage in a class:

class Person(SQLObject):
username = StringCol(length=100, alternateID=True)
roles = RelatedJoin('Role', joinColumn='person', otherColumn='role',

intermediateTable='assigned_roles')
class Role(SQLObject):

name = StringCol(length=50, alternateID=True)
roles = RelatedJoin('Person', joinColumn='role', otherColumn='person',

intermediateTable='assigned_roles')

SingleJoin: One-to-One

Similar to MultipleJoin, but returns just one object, not a list.

Connection pooling

Connection object acquires a new low-level DB API connection from the pool and stores it; the low-level connection is
removed from the pool; “releasing” means “return it to the pool”. For single-threaded programs there is one connection
in the pool.

30 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

If the pool is empty a new low-level connection opened; if one has disabled pooling (by setting conn._pool = None)
the connection will be closed instead of returning to the pool.

Transactions

Transaction support in SQLObject is left to the database. Transactions can be used like:

conn = DBConnection.PostgresConnection('yada')
trans = conn.transaction()
p = Person.get(1, trans)
p.firstName = 'Bob'
trans.commit()
p.firstName = 'Billy'
trans.rollback()

The trans object here is essentially a wrapper around a single database connection, and commit and rollback just
pass that message to the low-level connection.

One can call as much .commit()‘s, but after a .rollback() one has to call .begin(). The last .commit()
should be called as .commit(close=True) to release low-level connection back to the connection pool.

You can use SELECT FOR UPDATE in those databases that support it:

Person.select(Person.q.name=="value", forUpdate=True, connection=trans)

Method sqlhub.doInTransaction can be used to run a piece of code in a transaction. The method accepts
a callable and positional and keywords arguments. It begins a transaction using its processConnection or
threadConnection, calls the callable, commits the transaction and closes the underlying connection; it returns
whatever the callable returned. If an error occurs during call to the callable it rolls the transaction back and reraise the
exception.

Automatic Schema Generation

All the connections support creating and dropping tables based on the class definition. First you have to prepare your
class definition, which means including type information in your columns.

Indexes

You can also define indexes for your tables, which is only meaningful when creating your tables through SQLObject
(SQLObject relies on the database to implement the indexes). You do this again with attribute assignment, like:

firstLastIndex = DatabaseIndex('firstName', 'lastName')

This creates an index on two columns, useful if you are selecting a particular name. Of course, you can give a single
column, and you can give the column object (firstName) instead of the string name. Note that if you use unique
or alternateID (which implies unique) the database may make an index for you, and primary keys are always
indexed.

If you give the keyword argument unique to DatabaseIndex you’ll create a unique index – the combination of
columns must be unique.

You can also use dictionaries in place of the column names, to add extra options. E.g.:

lastNameIndex = DatabaseIndex({'expression': 'lower(last_name)'})

1.6. SQLObject 31

SQLObject Documentation, Release 3.3.0

In that case, the index will be on the lower-case version of the column. It seems that only PostgreSQL supports this.
You can also do:

lastNameIndex = DatabaseIndex({'column': lastName, 'length': 10})

Which asks the database to only pay attention to the first ten characters. Only MySQL supports this, but it is ignored
in other databases.

Creating and Dropping Tables

To create a table call createTable. It takes two arguments:

ifNotExists: If the table already exists, then don’t try to create it. Default False.

createJoinTables: If you used Many-to-Many relationships, then the intermediate tables will be created (but only for
one of the two involved classes). Default True.

dropTable takes arguments ifExists and dropJoinTables, self-explanatory.

Dynamic Classes

SQLObject classes can be manipulated dynamically. This leaves open the possibility of constructing SQLObject
classes from an XML file, from database introspection, or from a graphical interface.

Automatic Class Generation

SQLObject can read the table description from the database, and fill in the class columns (as would normally be
described in the _columns attribute). Do this like:

class Person(SQLObject):
class sqlmeta:

fromDatabase = True

You can still specify columns (in _columns), and only missing columns will be added.

Runtime Column and Join Changes

You can add and remove columns to your class at runtime. Such changes will effect all instances, since changes are
made in place to the class. There are two methods of the class sqlmeta object, addColumn and delColumn, both of
which take a Col object (or subclass) as an argument. There’s also an option argument changeSchema which, if True,
will add or drop the column from the database (typically with an ALTER command).

When adding columns, you must pass the name as part of the column constructor, like StringCol("username",
length=20). When removing columns, you can either use the Col object (as found in sqlmeta.columns, or which
you used in addColumn), or you can use the column name (like MyClass.delColumn("username")). You
can also add Joins, like MyClass.addJoin(MultipleJoin("MyOtherClass")), and remove joins with
delJoin. delJoin does not take strings, you have to get the join object out of the sqlmeta.joins attribute.

Legacy Database Schemas

Often you will have a database that already exists, and does not use the naming conventions that SQLObject expects,
or does not use any naming convention at all.

32 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

SQLObject requirements

While SQLObject tries not to make too many requirements on your schema, some assumptions are made. Some of
these may be relaxed in the future.

All tables that you want to turn into a class need to have an integer primary key. That key should be defined like:

MySQL: INT PRIMARY KEY AUTO_INCREMENT

Postgres: SERIAL PRIMARY KEY

SQLite: INTEGER PRIMARY KEY AUTOINCREMENT

SQLObject does not support primary keys made up of multiple columns (that probably won’t change). It does not
generally support tables with primary keys with business meaning – i.e., primary keys are assumed to be immutable
(that won’t change).

At the moment foreign key column names must end in "ID" (case-insensitive). This restriction will probably be
removed in the next release.

Workaround for primary keys made up of multiple columns

If the database table/view has ONE NUMERIC Primary Key then sqlmeta - idName should be used to map the table
column name to SQLObject id column.

If the Primary Key consists only of number columns it is possible to create a virtual column id this way:

Example for Postgresql:

select ‘1’||lpad(PK1,max_length_of_PK1,‘0’)||lpad(PK2,max_length_of_PK2,‘0’)||...||lpad(PKn,max_length_of_PKn,‘0’)
as “id”, column_PK1, column_PK2, .., column_PKn, column... from table;

Note:

• The arbitrary ‘1’ at the beginning of the string to allow for leading zeros of the first PK.

• The application designer has to determine the maximum length of each Primary Key.

This statement can be saved as a view or the column can be added to the database table, where it can be kept up to date
with a database trigger.

Obviously the “view” method does generally not allow insert, updates or deletes. For Postgresql you may want to
consult the chapter “RULES” for manipulating underlying tables.

For an alphanumeric Primary Key column a similar method is possible:

Every character of the lpaded PK has to be transfered using ascii(character) which returns a 3digit number which can
be concatenated as shown above.

Caveats:

• this way the id may become a very large integer number which may cause troubles elsewhere.

• no performance loss takes place if the where clauses specifies the PK columns.

Example: CD-Album * Album: PK=ean * Tracks: PK=ean,disc_nr,track_nr

The database view to show the tracks starts:

SELECT ean||lpad(“disc_nr”,2,‘0’)||lpad(“track_nr”,2,‘0’) as id, ... Note: no leading ‘1’ and no padding
necessary for ean numbers

Tracks.select(Tracks.q.ean==id) ... where id is the ean of the Album.

1.6. SQLObject 33

SQLObject Documentation, Release 3.3.0

Changing the Naming Style

By default names in SQLObject are expected to be mixed case in Python (like mixedCase), and underscore-separated
in SQL (like mixed_case). This applies to table and column names. The primary key is assumed to be simply id.

Other styles exist. A typical one is mixed case column names, and a primary key that includes the table name, like
ProductID. You can use a different Style object to indicate a different naming convention. For instance:

class Person(SQLObject):
class sqlmeta:

style = MixedCaseStyle(longID=True)
firstName = StringCol()
lastName = StringCol()

If you use Person.createTable(), you’ll get:

CREATE TABLE Person (
PersonID INT PRIMARY KEY,
FirstName Text,
LastName Text

)

The MixedCaseStyle object handles the initial capitalization of words, but otherwise leaves them be. By using
longID=True, we indicate that the primary key should look like a normal reference (PersonID for MixedCaseS-
tyle, or person_id for the default style).

If you wish to change the style globally, assign the style to the connection, like:

__connection__.style = MixedCaseStyle(longID=True)

Irregular Naming

This is now covered in the Class sqlmeta section.

Non-Integer Keys

While not strictly a legacy database issue, this fits into the category of “irregularities”. If you use non-integer
keys, all primary key management is up to you. You must create the table yourself (SQLObject can create tables
with int or str IDs), and when you create instances you must pass a id keyword argument into constructor (like
Person(id='555-55-5555', ...)).

DBConnection: Database Connections

The DBConnection module currently has six external classes, MySQLConnection, PostgresConnection, SQLiteCon-
nection, SybaseConnection, MaxdbConnection, MSSQLConnection.

You can pass the keyword argument debug to any connector. If set to true, then any SQL sent to the database will also
be printed to the console.

You can additionally pass logger keyword argument which should be a name of the logger to use. If specified and
debug is True, SQLObject will write debug print statements via that logger instead of printing directly to console.
The argument loglevel allows to choose the logging level - it can be debug, info, warning, error, critical
or exception. In case logger is absent or empty SQLObject uses print‘s instead of logging; loglevel can be
stdout or stderr in this case; default is stdout.

34 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

To configure logging one can do something like that:

import logging
logging.basicConfig(

filename='test.log',
format='[%(asctime)s] %(name)s %(levelname)s: %(message)s',
level=logging.DEBUG,

)
log = logging.getLogger("TEST")
log.info("Log started")

__connection__ = "sqlite:/:memory:?debug=1&logger=TEST&loglevel=debug"

The code redirects SQLObject debug messages to test.log file.

MySQL

MySQLConnection takes the keyword arguments host, port, db, user, and password, just like MySQLdb.connect does.

MySQLConnection supports all the features, though MySQL only supports transactions when using the InnoDB
backend; SQLObject can explicitly define the backend using sqlmeta.createSQL.

Supported drivers are mysqldb, connector, oursql and pymysql, pyodbc, pypyodbc or odbc (try
pyodbc and pypyodbc); defualt is mysqldb.

Keyword argument conv allows to pass a list of custom converters. Example:

import time
import sqlobject
import MySQLdb.converters

def _mysql_timestamp_converter(raw):
"""Convert a MySQL TIMESTAMP to a floating point number representing
the seconds since the Un*x Epoch. It uses custom code the input seems
to be the new (MySQL 4.1+) timestamp format, otherwise code from the
MySQLdb module is used."""
if raw[4] == '-':

return time.mktime(time.strptime(raw, '%Y-%m-%d %H:%M:%S'))
else:

return MySQLdb.converters.mysql_timestamp_converter(raw)

conversions = MySQLdb.converters.conversions.copy()
conversions[MySQLdb.constants.FIELD_TYPE.TIMESTAMP] = _mysql_timestamp_converter

MySQLConnection = sqlobject.mysql.builder()
connection = MySQLConnection(user='foo', db='somedb', conv=conversions)

Connection-specific parameters are: unix_socket, init_command, read_default_file,
read_default_group, conv, connect_timeout, compress, named_pipe, use_unicode,
client_flag, local_infile, ssl_key, ssl_cert, ssl_ca, ssl_capath, charset.

Postgres

PostgresConnection takes a single connection string, like "dbname=something user=some_user", just like
psycopg.connect. You can also use the same keyword arguments as for MySQLConnection, and a dsn string will be
constructed.

1.6. SQLObject 35

SQLObject Documentation, Release 3.3.0

PostgresConnection supports transactions and all other features.

The user can choose a DB API driver for PostgreSQL by using a driver parameter in DB URI or PostgresConnection
that can be a comma-separated list of driver names. Possible drivers are: psycopg2, psycopg1, psycopg (tries
psycopg2 and psycopg1), pygresql, pygresql, pypostgresql, pyodbc, pypyodbc or odbc (try pyodbc
and pypyodbc). Default is psycopg.

Connection-specific parameters are: sslmode, unicodeCols, schema, charset.

SQLite

SQLiteConnection takes the a single string, which is the path to the database file.

SQLite puts all data into one file, with a journal file that is opened in the same directory during operation (the file is
deleted when the program quits). SQLite does not restrict the types you can put in a column – strings can go in integer
columns, dates in integers, etc.

SQLite may have concurrency issues, depending on your usage in a multi-threaded environment.

The user can choose a DB API driver for SQLite by using a driver parameter in DB URI or SQLiteConnection
that can be a comma-separated list of driver names. Possible drivers are: pysqlite2 (alias sqlite2), sqlite3,
sqlite (alias sqlite1). Default is to test pysqlite2, sqlite3 and sqlite in that order.

Connection-specific parameters are: encoding, mode, timeout, check_same_thread, use_table_info.

Firebird

FirebirdConnection takes the arguments host, db, user (default "sysdba"), password (default "masterkey").

Firebird supports all the features. Support is still young, so there may be some issues, especially with concurrent
access, and especially using lazy selects. Try list(MyClass.select()) to avoid concurrent cursors if you have
problems (using list() will pre-fetch all the results of a select).

Firebird support fdb, kinterbasdb or firebirdsql drivers. Default are fdb and kinterbasdb.

There could be a problem if one tries to connect to a server running on w32 from a program running on Unix; the
problem is how to specify the database so that SQLObject correctly parses it. Vertical bar is replaces by a semicolon
only on a w32. On Unix a vertical bar is a pretty normal character and must not be processed.

The most correct way to fix the problem is to connect to the DB using a database name, not a file name. In the Firebird
a DBA can set an alias instead of database name in the aliases.conf file

Example from Firebird 2.0 Administrators Manual:

fbdb1 is on a Windows server:
fbdb1 = c:\Firebird\sample\Employee.fdb

Now a program can connect to firebird://host:port/fbdb1.

One can edit aliases.conf whilst the server is running. There is no need to stop and restart the server in order for new
aliases.conf entries to be recognised.

If you are using indexes and get an error like key size exceeds implementation restriction for index, see this page to
understand the restrictions on your indexing.

Connection-specific parameters are: dialect, role, charset.

36 Chapter 1. Documentation

http://www.firebirdmanual.com/firebird/en/firebird-manual/2
http://mujweb.cz/iprenosil/interbase/ip_ib_indexcalculator.htm

SQLObject Documentation, Release 3.3.0

Sybase

SybaseConnection takes the arguments host, db, user, and password. It also takes the extra boolean argument locking
(default True), which is passed through when performing a connection. You may use a False value for locking if you
are not using multiple threads, for a slight performance boost.

It uses the Sybase module.

Connection-specific parameters are: locking, autoCommit.

MAX DB

MAX DB, also known as SAP DB, is available from a partnership of SAP and MySQL. It takes the typical arguments:
host, database, user, password. It also takes the arguments sqlmode (default "internal"), isolation, and timeout,
which are passed through when creating the connection to the database.

It uses the sapdb module.

Connection-specific parameters are: autoCommit, sqlmode, isolation, timeout.

MS SQL Server

The MSSQLConnection objects wants to use new style connection strings in the format of

mssql://user:pass@host:port/db

This will then be mapped to either the correct driver format. If running SQL Server on a “named” port, make sure to
specify the port number in the URI.

The two drivers currently supported are adodbapi and pymssql.

The user can choose a DB API driver for MSSQL by using a driver parameter in DB URI or MSSQLConnection
that can be a comma-separated list of driver names. Possible drivers are: adodb (alias adodbapi) and pymssql.
Default is to test adodbapi and pymssql in that order.

Connection-specific parameters are: autoCommit, timeout.

Events (signals)

Signals are a mechanism to be notified when data or schema changes happen through SQLObject. This may be useful
for doing custom data validation, logging changes, setting default attributes, etc. Some of what signals can do is
also possible by overriding methods, but signals may provide a cleaner way, especially across classes not related by
inheritance.

Example:

from sqlobject.events import listen, RowUpdateSignal, RowCreatedSignal
from model import Users

def update_listener(instance, kwargs):
"""keep "last_updated" field current"""
import datetime
BAD method 1, causes infinite recursion?
instance should be read-only
instance.last_updated = datetime.datetime.now()
GOOD method 2
kwargs['last_updated'] = datetime.datetime.now()

1.6. SQLObject 37

http://www.object-craft.com.au/projects/sybase/
http://maxdb.sap.com/doc/7_8/50/01923f25b842438a408805774f6989/frameset.htm
http://adodbapi.sourceforge.net/
http://www.pymssql.org/en/latest/index.html

SQLObject Documentation, Release 3.3.0

def created_listener(instance, kwargs, post_funcs):
""""email me when new users added"""
email() implementation left as an exercise for the reader
msg = "%s just was just added to the database!" % kwargs['name']
email(msg)

listen(update_listener, Users, RowUpdateSignal)
listen(created_listener, Users, RowCreatedSignal)

Exported Symbols

You can use from sqlobject import *, though you don’t have to. It exports a minimal number of symbols.
The symbols exported:

From sqlobject.main:

• NoDefault

• SQLObject

• getID

• getObject

From sqlobject.col: * Col * StringCol * IntCol * FloatCol * KeyCol * ForeignKey * EnumCol * SetCol * DateTimeCol
* DateCol * TimeCol * TimestampCol * DecimalCol * CurrencyCol

From sqlobject.joins: * MultipleJoin * RelatedJoin

From sqlobject.styles: * Style * MixedCaseUnderscoreStyle * DefaultStyle * MixedCaseStyle

From sqlobject.sqlbuilder:

• AND

• OR

• NOT

• IN

• LIKE

• DESC

• CONTAINSSTRING

• const

• func

LEFT JOIN and other JOINs

First look in the FAQ, question “How can I do a LEFT JOIN?”

Still here? Well. To perform a JOIN use one of the JOIN helpers from SQLBuilder. Pass an instance of the helper to
.select() method. For example:

from sqlobject.sqlbuilder import LEFTJOINOn
MyTable.select(

join=LEFTJOINOn(Table1, Table2,
Table1.q.name == Table2.q.value))

38 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

will generate the query:

SELECT my_table.* FROM my_table, table1
LEFT JOIN table2 ON table1.name = table2.value;

If you want to join with the primary table - leave the first table None:

MyTable.select(
join=LEFTJOINOn(None, Table1,

MyTable.q.name == Table1.q.value))

will generate the query:

SELECT my_table.* FROM my_table
LEFT JOIN table2 ON my_table.name = table1.value;

The join argument for .select() can be a JOIN() or a sequence (list/tuple) of JOIN()s.

Available joins are JOIN, INNERJOIN, CROSSJOIN, STRAIGHTJOIN, LEFTJOIN, LEFTOUTERJOIN, NATU-
RALJOIN, NATURALLEFTJOIN, NATURALLEFTOUTERJOIN, RIGHTJOIN, RIGHTOUTERJOIN, NATURAL-
RIGHTJOIN, NATURALRIGHTOUTERJOIN, FULLJOIN, FULLOUTERJOIN, NATURALFULLJOIN, NATU-
RALFULLOUTERJOIN, INNERJOINOn, LEFTJOINOn, LEFTOUTERJOINOn, RIGHTJOINOn, RIGHTOUTER-
JOINOn, FULLJOINOn, FULLOUTERJOINOn, INNERJOINUsing, LEFTJOINUsing, LEFTOUTERJOINUsing,
RIGHTJOINUsing, RIGHTOUTERJOINUsing, FULLJOINUsing, FULLOUTERJOINUsing.

How can I join a table with itself?

Use Alias from SQLBuilder. Example:

from sqlobject.sqlbuilder import Alias
alias = Alias(MyTable, "my_table_alias")
MyTable.select(MyTable.q.name == alias.q.value)

will generate the query:

SELECT my_table.* FROM my_table, my_table AS my_table_alias
WHERE my_table.name = my_table_alias.value;

Can I use a JOIN() with aliases?

Sure! That’s a situation the JOINs and aliases were primary developed for. Code:

from sqlobject.sqlbuilder import LEFTJOINOn, Alias
alias = Alias(OtherTable, "other_table_alias")
MyTable.select(MyTable.q.name == OtherTable.q.value,

join=LEFTJOINOn(MyTable, alias, MyTable.col1 == alias.q.col2))

will result in the query:

SELECT my_table.* FROM other_table,
my_table LEFT JOIN other_table AS other_table_alias

WHERE my_table.name == other_table.value AND
my_table.col1 = other_table_alias.col2.

1.6. SQLObject 39

SQLObject Documentation, Release 3.3.0

Subqueries (subselects)

You can run queries with subqueries (subselects) on those DBMS that can do subqueries (MySQL supports subqueries
from version 4.1).

Use corresponding classes and functions from SQLBuilder:

from sqlobject.sqlbuilder import EXISTS, Select
select = Test1.select(EXISTS(Select(Test2.q.col2, where=(Outer(Test1).q.col1 == Test2.
→˓q.col2))))

generates the query:

SELECT test1.id, test1.col1 FROM test1 WHERE
EXISTS (SELECT test2.col2 FROM test2 WHERE (test1.col1 = test2.col2))

Note the usage of Outer - it is a helper to allow referring to a table in the outer query.

Select() is used instead of .select() because you need to control what columns the inner query returns.

Available queries are IN(), NOTIN(), EXISTS(), NOTEXISTS(), SOME(), ANY() and ALL(). The last 3 are
used with comparison operators, like this: somevalue = ANY(Select(...)).

Utilities

Some useful utility functions are included with SQLObject. For more information see their module docstrings.

• sqlobject.util.csvexport

SQLBuilder

For more information on SQLBuilder, read the SQLBuilder Documentation.

SQLObject FAQ

Contents

• SQLObject FAQ

– SQLExpression

* How does the select(...) method know what to do?

– Why there is no __len__?

– How can I do a LEFT JOIN?

* Simple

* Efficient

* SQL-wise

– How can I join a table with itself?

– How can I define my own intermediate table in my Many-to-Many relationship?

40 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

– How Does Inheritance Work?

– Composite/Compound Attributes

– Non-Integer IDs

– Binary Values

– Reloading Modules

– Python Keywords

– Lazy Updates and Insert

– Mutually referencing tables

– What about GROUP BY, UNION, etc?

– How to do mass-insertion?

– How can I specify the MySQL engine to use, or tweak other SQL-engine specific features?

SQLExpression

In SomeTable.select(SomeTable.q.Foo > 30) why doesn’t the inner parameter, SomeTable.q.Foo > 30, get evaluated to
some boolean value?

q is an object that returns special attributes of type sqlbuilder.SQLExpression. SQLExpression is a special class that
overrides almost all Python magic methods and upon any operation instead of evaluating it constructs another instance
of SQLExpression that remembers what operation it has to do. This is similar to a symbolic algebra. Example:

SQLExpression(“foo”) > 30

produces SQLExpression(“foo”, “>”, 30) (well, it really produces SQLExpression(SQLExpression(“foo”)...))

How does the select(...) method know what to do?

In short, select() recursively evaluates the top-most SQLExpression to a string:

SQLExpression(“foo”, “>”, 30) => “foo > 30”

and passes the result as a string to the SQL backend.

The longer but more detailed and correct explanation is that select() produces an instance of SelectResults class that
upon being iterated over produces an instance of Iteration class that upon calling its next() method (it is iterator!)
constructs the SQL query string, passes it to the backend, fetches the results, wraps every row as SQLObject instance
and passes them back to the user.

For the details of the implementation see sqlobject/main.py for SQLObject, sqlobject/sqlbuilder.py for SQLExpres-
sion, sqlobject/dbconnection.py for DBConnection class (that constructs the query strings) and Iteration class, and
different subdirectories of sqlobject for concrete implementations of connection classes - different backends require
different query strings.

Why there is no __len__?

There are reasons why there is no __len__ method, though many people think having those make them feel more
integrated into Python.

1.7. SQLObject FAQ 41

SQLObject Documentation, Release 3.3.0

One is that len(foo) is expected to be fast, but issuing a COUNT query can be slow. Worse, often this causes the
database to do essentially redundant work when the actual query is performed (generally taking the len of a sequence
is followed by accessing items from that sequence).

Another is that list(foo) implicitly tries to do a len first, as an optimization (because len is expected to be cheap – see
previous point). Worse, it swallows all exceptions that occur during that call to __len__, so if it fails (e.g. there’s a
typo somewhere in the query), the original cause is silently discarded, and instead you’re left with mysterious errors
like “current transaction is aborted, commands ignored until end of transaction block” for no apparent reason.

How can I do a LEFT JOIN?

The short: you can’t. You don’t need to. That’s a relational way of thinking, not an object way of thinking. But it’s
okay! It’s not hard to do the same thing, even if it’s not with the same query.

For these examples, imagine you have a bunch of customers, with contacts. Not all customers have a contact, some
have several. The left join would look like:

SELECT customer.id, customer.first_name, customer.last_name,
contact.id, contact.address

FROM customer
LEFT JOIN contact ON contact.customer_id = customer.id

Simple

for customer in Customer.select():
print customer.firstName, customer.lastName
for contact in customer.contacts:

print ' ', contact.phoneNumber

The effect is the same as the left join – you get all the customers, and you get all their contacts. The problem, however,
is that you will be executing more queries – a query for each customer to fetch the contacts – where with the left join
you’d only do one query. The actual amount of information returned from the database will be the same. There’s a
good chance that this won’t be significantly slower. I’d advise doing it this way unless you hit an actual performance
problem.

Efficient

Lets say you really don’t want to do all those queries. Okay, fine:

custContacts = {}
for contact in Contact.select():

custContacts.setdefault(contact.customerID, []).append(contact)
for customer in Customer.select():

print customer.firstName, customer.lastName
for contact in custContacts.get(customer.id, []):

print ' ', contact.phoneNumber

This way there will only be at most two queries. It’s a little more crude, but this is an optimization, and optimizations
often look less than pretty.

But, say you don’t want to get everyone, just some group of people (presumably a large enough group that you still
need this optimization):

42 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

query = Customer.q.firstName.startswith('J')
custContacts = {}
for contact in Contact.select(AND(Contact.q.customerID == Customer.q.id,

query)):
custContacts.setdefault(contact.customerID, []).append(contact)

for customer in Customer.select(query):
print customer.firstName, customer.lastName
for contact in custContacts.get(customer.id, []):

print ' ', contact.phoneNumber

SQL-wise

Use LEFTJOIN() from SQLBuilder.

How can I join a table with itself?

Use Alias from SQLBuilder. See example.

How can I define my own intermediate table in my Many-to-Many relationship?

Note: In User and Role, SQLRelatedJoin is used with createRelatedTable=False so the intermediate table is not
created automatically. We also set the intermediate table name with intermediateTable=’user_roles’. UserRoles is the
definition of our intermediate table. UserRoles creates a unique index to make sure we don’t have duplicate data in the
database. We also added an extra field called active which has a boolean value. The active column might be used to
activate/deactivate a given role for a user in this example. Another common field to add in this an intermediate table
might be a sort field. If you want to get a list of rows from the intermediate table directly add a MultipleJoin to User
or Role class.

We’ll expand on the User and Role example and define our own UserRoles class which will be the intermediate table
for the User and Role Many-to-Many relationship.

Example:

>>> class User(SQLObject):
... class sqlmeta:
... table = "user_table"
... username = StringCol(alternateID=True, length=20)
... roles = SQLRelatedJoin('Role',
... intermediateTable='user_roles',
... createRelatedTable=False)

>>> class Role(SQLObject):
... name = StringCol(alternateID=True, length=20)
... users = SQLRelatedJoin('User',
... intermediateTable='user_roles',
... createRelatedTable=False)

>>> class UserRoles(SQLObject):
... class sqlmeta:
... table = "user_roles"
... user = ForeignKey('User', notNull=True, cascade=True)
... role = ForeignKey('Role', notNull=True, cascade=True)

1.7. SQLObject FAQ 43

SQLObject Documentation, Release 3.3.0

... active = BoolCol(notNull=True, default=False)

... unique = index.DatabaseIndex(user, role, unique=True)

How Does Inheritance Work?

SQLObject is not intended to represent every Python inheritance structure in an RDBMS – rather it is intended to
represent RDBMS structures as Python objects. So lots of things you can do in Python you can’t do with SQLObject
classes. However, some form of inheritance is possible.

One way of using this is to create local conventions. Perhaps:

class SiteSQLObject(SQLObject):
_connection = DBConnection.MySQLConnection(user='test', db='test')
_style = MixedCaseStyle()

And maybe you want a list of the columns, to autogenerate
forms from:
def columns(self):

return [col.name for col in self._columns]

Since SQLObject doesn’t have a firm introspection mechanism (at least not yet) the example shows the beginnings of
a bit of ad hoc introspection (in this case exposing the _columns attribute in a more pleasing/public interface).

However, this doesn’t relate to database inheritance at all, since we didn’t define any columns. What if we do?

class Person(SQLObject):
firstName = StringCol()
lastName = StringCol()

class Employee(Person):
position = StringCol()

Unfortunately, the resultant schema probably doesn’t look like what you might have wanted:

CREATE TABLE person (
id INT PRIMARY KEY,
first_name TEXT,
last_name TEXT

);

CREATE TABLE employee (
id INT PRIMARY KEY
first_name TEXT,
last_name TEXT,
position TEXT

)

All the columns from person are just repeated in the employee table. What’s more, an ID for a Per-
son is distinct from an ID for an employee, so for instance you must choose ForeignKey("Person") or
ForeignKey("Employee"), you can’t have a foreign key that sometimes refers to one, and sometimes refers
to the other.

Altogether, not very useful. You probably want a person table, and then an employee table with a one-to-one
relation between the two. Of course, you can have that, just create the appropriate classes/tables – but it will appear
as two distinct classes, and you’d have to do something like Person(1).employee.position. Of course, you
can always create the necessary shortcuts, like:

44 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

class Person(SQLObject):
firstName = StringCol()
lastName = StringCol()

def _get_employee(self):
value = Employee.selectBy(person=self)
if value:

return value[0]
else:

raise AttributeError, '%r is not an employee' % self
def _get_isEmployee(self):

value = Employee.selectBy(person=self)
turn into a bool:
return not not value

def _set_isEmployee(self, value):
if value:

Make sure we are an employee...
if not self.isEmployee:

Empoyee.new(person=self, position=None)
else:

if self.isEmployee:
self.employee.destroySelf()

def _get_position(self):
return self.employee.position

def _set_position(self, value):
self.employee.position = value

class Employee(SQLObject):
person = ForeignKey('Person')
position = StringCol()

There is also another kind of inheritance. See Inheritance.html

Composite/Compound Attributes

A composite attribute is an attribute formed from two columns. For example:

CREATE TABLE invoice_item (
id INT PRIMARY KEY,
amount NUMERIC(10, 2),
currency CHAR(3)

);

Now, you’ll probably want to deal with one amount/currency value, instead of two columns. SQLObject doesn’t
directly support this, but it’s easy (and encouraged) to do it on your own:

class InvoiceItem(SQLObject):
amount = Currency()
currency = StringChar(length=3)

def _get_price(self):
return Price(self.amount, self.currency)

def _set_price(self, price):
self.amount = price.amount
self.currency = price.currency

class Price(object):

1.7. SQLObject FAQ 45

SQLObject Documentation, Release 3.3.0

def __init__(self, amount, currency):
self._amount = amount
self._currency = currency

def _get_amount(self):
return self._amount

amount = property(_get_amount)

def _get_currency(self):
return self._currency

currency = property(_get_currency)

def __repr__(self):
return '<Price: %s %s>' % (self.amount, self.currency)

You’ll note we go to some trouble to make sure that Price is an immutable object. This is important, because if
Price wasn’t and someone changed an attribute, the containing InvoiceItem instance wouldn’t detect the change
and update the database. (Also, since Price doesn’t subclass SQLObject, we have to be explicit about creating
properties) Some people refer to this sort of class as a Value Object, that can be used similar to how an integer or string
is used.

You could also use a mutable composite class:

class Address(SQLObject):
street = StringCol()
city = StringCol()
state = StringCol(length=2)

latitude = FloatCol()
longitude = FloatCol()

def _init(self, id):
SQLObject._init(self, id)
self._coords = SOCoords(self)

def _get_coords(self):
return self._coords

class SOCoords(object):
def __init__(self, so):

self._so = so

def _get_latitude(self):
return self._so.latitude

def _set_latitude(self, value):
self._so.latitude = value

latitude = property(_get_latitude, set_latitude)

def _get_longitude(self):
return self._so.longitude

def _set_longitude(self, value):
self._so.longitude = value

longitude = property(_get_longitude, set_longitude)

Pretty much a proxy, really, but SOCoords could contain other logic, could interact with non-SQLObject-based
latitude/longitude values, or could be used among several objects that have latitude/longitude columns.

46 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

Non-Integer IDs

Yes, you can use non-integer IDs.

If you use non-integer IDs, you will not be able to use automatic CREATE TABLE generation (i.e., createTable);
SQLObject can create tables with int or str IDs. You also will have to give your own ID values when creating an
object, like:

color = Something(id="blue", r=0, b=100, g=0)

IDs are, and always will in future versions, be considered immutable. Right now that is not enforced; you can assign
to the id attribute. But if you do you’ll just mess everything up. This will probably be taken away sometime to avoid
possibly confusing bugs (actually, assigning to id is almost certain to cause confusing bugs).

If you are concerned about enforcing the type of IDs (which can be a problem even with integer IDs) you may want to
do this:

def Color(SQLObject):
def _init(self, id, connection=None):

id = str(id)
SQLObject._init(self, id, connection)

Instead of str() you may use int() or whatever else you want. This will be resolved in a future version when ID
column types can be declared like other columns.

Additionally you can set idType=str in you SQLObject class.

Binary Values

Binary values can be difficult to store in databases, as SQL doesn’t have a widely-implemented way to express binaries
as literals, and there’s differing support in database.

The module sqlobject.col defines validators and column classes that to some extent support binary values. There
is BLOBCol that extends StringCol and allow to store binary values; currently it works only with PostgreSQL and
MySQL. PickleCol extends BLOBCol and allows to store any object in the column; the column, naturally, pickles the
object upon assignment and unpickles it upon retrieving the data from the DB.

Another possible way to keep binary data in a database is by using encoding. Base 64 is a good encoding, reasonably
compact but also safe. As an example, imagine you want to store images in the database:

class Image(SQLObject):

data = StringCol()
height = IntCol()
width = IntCol()

def _set_data(self, value):
self._SO_set_data(value.encode('base64'))

def _get_data(self, value):
return self._SO_get_data().decode('base64')

Reloading Modules

If you’ve tried to reload a module that defines SQLObject subclasses, you’ve probably encountered various odd errors.
The short answer: you can’t reload these modules.

1.7. SQLObject FAQ 47

SQLObject Documentation, Release 3.3.0

The long answer: reloading modules in Python doesn’t work very well. Reloading actually means re-running the
module. Every class statement creates a class – but your old classes don’t disappear. When you reload a module,
new classes are created, and they take over the names in the module.

SQLObject, however, doesn’t search the names in a module to find a class. When you say
ForeignKey('SomeClass'), SQLObject looks for any SQLObject subclass anywhere with the name
SomeClass. This is to avoid problems with circular imports and circular dependencies, as tables have forward-
and back-references, and other circular dependencies. SQLObject resolves these dependencies lazily.

But when you reload a module, suddenly there will be two SQLObject classes in the process with the same name.
SQLObject doesn’t know that one of them is obsolete. And even if it did, it doesn’t know every other place in the
system that has a reference to that obsolete class.

For this reason and several others, reloading modules is highly error-prone and difficult to support.

Python Keywords

If you have a table column that is a Python keyword, you should know that the Python attribute doesn’t have to match
the name of the column. See Irregular Naming in the documentation.

Lazy Updates and Insert

Lazy updates allow you to defer sending UPDATES until you synchronize the object. However, there is no way to do
a lazy insert; as soon as you create an instance the INSERT is executed.

The reason for this limit is that each object needs a database ID, and in many databases you cannot attain an ID until
you create a row.

Mutually referencing tables

How can I create mutually referencing tables? For the code:

class Person(SQLObject):
role = ForeignKey("Role")

class Role(SQLObject):
person = ForeignKey("Person")

Person.createTable()
Role.createTable()

Postgres raises ProgrammingError: ERROR: relation “role” does not exist.

The correct way is to delay constraints creation until all tables are created:

class Person(SQLObject):
role = ForeignKey("Role")

class Role(SQLObject):
person = ForeignKey("Person")

constraints = Person.createTable(applyConstraints=False)
constraints += Role.createTable(applyConstraints=False)

for constraint in constraints:
connection.query(constraint)

48 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

What about GROUP BY, UNION, etc?

In short - not every query can be represented in SQLObject. SQLOBject’s objects are instances of “table” clasess:

class MyTable(SQLObject):
...

my_table_row = MyTable.get(id)

Now my_table_row is an instance of MyTable class and represents a row in the my_table table. But for a statement
with GROUP BY like this:

SELECT my_column, COUNT(*) FROM my_table GROUP BY my_column;

there is no table, there is no corresponding “table” class, and SQLObject cannot return a list of meaningful objects.

You can use a lower-level machinery available in SQLBuilder.

How to do mass-insertion?

Mass-insertion using high-level API in SQLObject is slow. There are many reasons for that. First, on creation SQLOb-
ject instances pass all values through validators/converters which is convenient but takes time. Second, after an IN-
SERT query SQLObject executes a SELECT query to get back autogenerated values (id and timestamps). Third, there
is caching and cache maintaining. Most of this is unnecessary for mass-insertion, hence high-level API is unsuitable.

Less convenient (no validators) but much faster API is Insert from SQLBuilder.

How can I specify the MySQL engine to use, or tweak other SQL-engine specific
features?

You can ALTER the table just after creation using the sqlmeta attribute createSQL, for example:

class SomeObject(SQLObject):
class sqlmeta:

createSQL = { 'mysql' : 'ALTER TABLE some_object ENGINE InnoDB' }
your columns here

Maybe you want to specify the charset too? No problem:

class SomeObject(SQLObject):
class sqlmeta:

createSQL = { 'mysql' : [
'ALTER TABLE some_object ENGINE InnoDB',
'''ALTER TABLE some_object CHARACTER SET utf8

COLLATE utf8_estonian_ci''']
}

SQLBuilder

Contents

1.8. SQLBuilder 49

SQLObject Documentation, Release 3.3.0

• SQLBuilder

– SQLExpression

– SQL statements

* Select

* Insert

* Update

* Delete

* Union

– Nested SQL statements (subqueries)

A number of variables from SQLBuilder are included with from sqlobject import * – see the relevant
SQLObject documentation for more. Its functionality is also available through the special q attribute of SQLObject
classes.

SQLExpression

SQLExpression uses clever overriding of operators to make Python expressions build SQL expressions – so long as
you start with a Magic Object that knows how to fake it.

With SQLObject, you get a Magic Object by accessing the q attribute of a table class – this gives you an object that
represents the field. All of this is probably easier to grasp in an example:

>>> from sqlobject.sqlbuilder import *
>>> person = table.person
person is now equivalent to the Person.q object from the SQLObject
documentation
>>> person
person
>>> person.first_name
person.first_name
>>> person.first_name == 'John'
person.first_name = 'John'
>>> name = 'John'
>>> person.first_name != name
person.first_name != 'John'
>>> AND(person.first_name == 'John', person.last_name == 'Doe')
(person.first_name = 'John' AND person.last_name = 'Doe')

Most of the operators work properly: <, >, <=, >=, !=, ==, +, -, /, *, **, %. However, and, or, and not do not work.
You can use &, |, and ~ instead – but be aware that these have the same precedence as multiplication. So:

This isn't what you want:
>> person.first_name == 'John' & person.last_name == 'Doe'
(person.first_name = ('John' AND person.last_name)) = 'Doe')
This is:
>> (person.first_name == 'John') & (person.last_name == 'Doe')
((person.first_name = 'John') AND (person.last_name == 'Doe'))

SQLBuilder also contains the functions AND, OR, and NOT which also work – I find these easier to work with. AND
and OR can take any number of arguments.

50 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

You can also use .startswith() and .endswith() on an SQL expression – these will translate to appropriate
LIKE statements and all % quoting is handled for you, so you can ignore that implementation detail. There is also a
LIKE function, where you can pass your string, with % for the wildcard, as usual.

If you want to access an SQL function, use the func variable, like:

>> person.created < func.NOW()

To pass a constant, use the const variable which is actually an alias for func.

SQL statements

SQLBuilder implements objects that execute SQL statements. SQLObject uses them internally in its higher-level API,
but users can use this mid-level API to execute SQL queries that are not supported by the high-level API. To use these
objects first construct an instance of a statement object, then ask the connection to convert the instance to an SQL
query and finally ask the connection to execute the query and return the results. For example, for Select class:

>>> from sqlobject.sqlbuilder import *
>> select = Select(['name', 'AVG(salary)'], staticTables=['employees'],
>> groupBy='name') # create an instance
>> query = connection.sqlrepr(select) # Convert to SQL string:
>> # SELECT name, AVG(salary) FROM employees GROUP BY name
>> rows = connection.queryAll(query) # Execute the query
>> # and get back the results as a list of rows
>> # where every row is a sequence of length 2 (name and average salary)

Select

A class to build SELECT queries. Accepts a number of parameters, all parameters except items are optional. Use
connection.queryAll(query) to execute the query and get back the results as a list of rows.

items: A string, an SQLExpression or a sequence of strings or SQLExpression’s, represents the list of columns. If
there are q-values SQLExpression’s Select derives a list of tables for SELECT query.

where: A string or an SQLExpression, represents the WHERE clause.

groupBy: A string or an SQLExpression, represents the GROUP BY clause.

having: A string or an SQLExpression, represents the HAVING part of the GROUP BY clause.

orderBy: A string or an SQLExpression, represents the ORDER BY clause.

join: A (list of) JOINs (LEFT JOIN, etc.)

distinct: A bool flag to turn on DISTINCT query.

start, end: Integers. The way to calculate OFFSET and LIMIT.

limit: An integer. limit, if passed, overrides end.

reversed: A bool flag to do ORDER BY in the reverse direction.

forUpdate: A bool flag to turn on SELECT FOR UPDATE query.

staticTables: A sequence of strings or SQLExpression’s that name tables for FROM. This parameter must be used if
items is a list of strings from which Select cannot derive the list of tables.

1.8. SQLBuilder 51

SQLObject Documentation, Release 3.3.0

Insert

A class to build INSERT queries. Accepts a number of parameters. Use connection.query(query) to execute
the query.

table: A string that names the table to INSERT into. Required.

valueList: A list of (key, value) sequences or {key: value} dictionaries; keys are column names. Either valueList or
values must be passed, but not both. Example:

>> insert = Insert('person', valueList=[('name', 'Test'), ('age', 42)])
or

>> insert = Insert('person', valueList=[{'name': 'Test'}, {'age': 42}])
>> query = connection.sqlrepr(insert)

Both generate the same query:
INSERT INTO person (name, age) VALUES ('Test', 42)

>> connection.query(query)

values: A dictionary {key: value}; keys are column names. Either valueList or values must be passed, but not both.
Example:

>> insert = Insert('person', values={'name': 'Test', 'age': 42})
>> query = connection.sqlrepr(insert)

The query is the same
INSERT INTO person (name, age) VALUES ('Test', 42)

>> connection.query(query)

Instances of the class work fast and thus are suitable for mass-insertion. If one needs to populate a database with
SQLObject running a lot of INSERT queries this class is the way to go.

Update

A class to build UPDATE queries. Accepts a number of parameters. Use connection.query(query) to execute
the query.

table: A string that names the table to UPDATE. Required.

values: A dictionary {key: value}; keys are column names. Required.

where: An optional string or SQLExpression, represents the WHERE clause.

Example:

>> update = Update('person',
>> values={'name': 'Test', 'age': 42}, where='id=1')
>> query = connection.sqlrepr(update)

UPDATE person SET name='Test', age=42 WHERE id=1
>> connection.query(query)

Delete

A class to build DELETE FROM queries. Accepts a number of parameters. Use connection.query(query) to
execute the query.

table: A string that names the table to UPDATE. Required.

where: An optional string or an SQLExpression, represents the WHERE clause. Required. If you need to delete all
rows pass where=None; this is a safety measure.

52 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

Example:

>> update = Delete('person', where='id=1')
>> query = connection.sqlrepr(update)

DELETE FROM person WHERE id=1
>> connection.query(query)

Union

A class to build UNION queries. Accepts a number of parameters - Select queries. Use connection.
queryAll(query) to execute the query and get back the results.

Example:

>> select1 = Select(['min', func.MIN(const.salary)], staticTables=['employees'])
>> select2 = Select(['max', func.MAX(const.salary)], staticTables=['employees'])
>> union = Union(select1, select2)
>> query = connection.sqlrepr(union)

SELECT 'min', MIN(salary) FROM employees
UNION
SELECT 'max', MAX(salary) FROM employees

>> rows = connection.queryAll(query)

Nested SQL statements (subqueries)

There are a few special operators that receive as parameter SQL statements. These are IN, NOTIN, EXISTS,
NOTEXISTS, SOME, ANY and ALL. Consider the following example: You are interested in removing records from a
table using deleteMany. However, the criterion for doing so depends on another table.

You would expect the following to work:

>> PersonWorkplace.deleteMany(where=
((PersonWorkplace.q.WorkplaceID==Workplace.q.id) &
(Workplace.q.id==SOME_ID)))

But this doesn’t work! However, you can’t do a join in a deleteMany call. To work around this issue, use IN:

>> PersonWorkplace.deleteMany(where=
IN(PersonWorkplace.q.WorkplaceID,
Select(Workplace.q.id, Workplace.q.id==SOME_ID)))

SelectResults: Using Queries

Contents:

• SelectResults: Using Queries

– Overview

– Retrieval Methods

* Iteration

1.9. SelectResults: Using Queries 53

SQLObject Documentation, Release 3.3.0

* getOne(default=optional)

– Cloning Methods

* orderBy(column)

* limit(num)

* lazyColumns(v)

* reversed()

* distinct()

* filter(expression)

– Aggregate Methods

* count()

* sum(column)

* min(column)

* max(column)

* avg(column)

– Traversal to related SQLObject classes

* throughTo.join_name and throughTo.foreign_key_name

Overview

SelectResults are returned from .select and .selectBy methods on SQLObject classes, and from
SQLMultipleJoin, and SQLRelatedJoin accessors on SQLObject instances.

SelectResults are generators, which are lazily evaluated. The SQL is only executed when you iterate over the Selec-
tResults, fetching rows one at a time. This way you can iterate over large results without keeping the entire result set
in memory. You can also do things like .reversed() without fetching and reversing the entire result – instead,
SQLObject can change the SQL that is sent so you get equivalent results.

Note: To retrieve the results all at once use the python idiom of calling list() on the generator to force execution
and convert the results to a stored list.

You can also slice SelectResults. This modifies the SQL query, so peeps[:10] will result in LIMIT 10 being
added to the end of the SQL query. If the slice cannot be performed in the SQL (e.g., peeps[:-10]), then the select
is executed, and the slice is performed on the list of results. This will generally only happen when you use negative
indexes.

In certain cases, you may get a SelectResults instance with an object in it more than once, e.g., in some joins. If you
don’t want this, you can add the keyword argument MyClass.select(..., distinct=True), which results
in a SELECT DISTINCT call.

You can get the length of the result without fetching all the results by calling count on the result object, like
MyClass.select().count(). A COUNT(*) query is used – the actual objects are not fetched from the
database. Together with slicing, this makes batched queries easy to write:

start = 20
size = 10

54 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

query = Table.select()
results = query[start:start+size]
total = query.count()
print "Showing page %i of %i" % (start/size + 1, total/size + 1)

Note: There are several factors when considering the efficiency of this kind of batching, and it depends very much
how the batching is being used. Consider a web application where you are showing an average of 100 results, 10 at
a time, and the results are ordered by the date they were added to the database. While slicing will keep the database
from returning all the results (and so save some communication time), the database will still have to scan through the
entire result set to sort the items (so it knows which the first ten are), and depending on your query may need to scan
through the entire table (depending on your use of indexes). Indexes are probably the most important way to improve
importance in a case like this, and you may find caching to be more effective than slicing.

In this case, caching would mean retrieving the complete results. You can use list(MyClass.select(...)) to
do this. You can save these results for some limited period of time, as the user looks through the results page by page.
This means the first page in a search result will be slightly more expensive, but all later pages will be very cheap.

Retrieval Methods

Iteration

As mentioned in the overview, the typical way to access the results is by treating it as a generator and iterating over it
(in a loop, by converting to a list, etc).

getOne(default=optional)

In cases where your restrictions cause there to always be a single record in the result set, this method will return it
or raise an exception: SQLObjectIntegrityError if more than one result is found, or SQLObjectNotFound if there are
actually no results, unless you pass in a default like .getOne(None).

Cloning Methods

These methods return a modified copy of the SelectResults instance they are called on, so succes-
sive calls can chained, eg results = MyClass.selectBy(city='Boston').filter(MyClass.q.
commute_distance>10).orderBy('vehicle_mileage') or used independently later on.

orderBy(column)

Takes a string column name (optionally prefixed with ‘-‘ for DESCending) or a SQLBuilder expression.

limit(num)

Only return first num many results. Equivalent to results[:num] slicing.

lazyColumns(v)

Only fetch the IDs for the results, the rest of the columns will be retrieved when attributes of the returned instances
are accessed.

1.9. SelectResults: Using Queries 55

SQLObject Documentation, Release 3.3.0

reversed()

Reverse-order. Alternative to calling orderBy with SQLBuilder.DESC or ‘-‘.

distinct()

In SQL, SELECT DISTINCT, removing duplicate rows.

filter(expression)

Add additional expressions to restrict result set. Takes either a string static SQL expression valid in a WHERE clause,
or a SQLBuilder expression. ANDed with any previous expressions.

Aggregate Methods

These return column values (strings, numbers, etc) not new SQLResults instances, by making the appropriate SQL
query (the actual result rows are not retrieved). Any that take a column can also take a SQLBuilder column instance,
e.g. MyClass.q.size.

count()

Returns the length of the result set, by a SQL SELECT COUNT(...) query.

sum(column)

The sum of values for column in the result set.

min(column)

The minimum value for column in the result set.

max(column)

The maximum value for column in the result set.

avg(column)

The average value for the column in the result set.

Traversal to related SQLObject classes

throughTo.join_name and throughTo.foreign_key_name

This accessor lets you retrieve the objects related to your SelectResults by either a join or foreign key relationship, in
the same manner as the cloning methods above. For instance:

56 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

Schools.select(Schools.q.student_satisfaction>90).throughTo.teachers

returns a SelectResults of Teachers of Schools with satisfied students, assuming Schools has a SQLMultipleJoin or
SQLRelatedJoin attribute named teachers. Similarily, with a self-joining foreign key named father:

Person.select(Person.q.name=='Steve').throughTo.father.throughTo.father

returns a SelectResults of Persons who are the paternal grandfather of someone named Steve.

The sqlobject-admin Tool

author Ian Bicking <ianb@colorstudy.com>

revision Rev

date $LastChangedDate$

Contents

• The sqlobject-admin Tool

– Introduction

* Common Options

* Simple Commands

– The create Command

– The sql Command

– The drop Command

– The execute Command

– The list Command

– The status Command

* Versioning & Upgrading

– Basic Usage

– The record Command

– The upgrade Command

* Future

Warning: This document isn’t entirely accurate; some of what it describes are the intended features of the tool,
not the actual features.

Particularly inaccurate is how modules and classes are found.

1.10. The sqlobject-admin Tool 57

mailto:ianb@colorstudy.com

SQLObject Documentation, Release 3.3.0

Introduction

The sqlobject-admin tool included with SQLObject allows you to manage your database as defined with
SQLObject classes.

Some of the features include creating tables, checking the status of the database, recording a version of a schema, and
updating the database to match the version of the schema in your code.

To see a list of commands run sqlobject-admin help. Each sub-command has -h option which explains the
details of that command.

Common Options

Many of the commands share some common options, mostly for finding the database and classes.

-c CONNECTION or --connection=CONNECTION:

This takes an argument, the connection string for the database. This overrides any connection the classes
have (if they are hardwired to a connection).

-f FILENAME or --config-file=FILENAME:

This is a configuration file from which to get the connection. This configuration file should be a Python-
syntax file that defines a global variable database, which is the connection string for the database.

-m MODULE or --module=MODULE:

A module to look in for classes. MODULE is something like myapp.amodule. Remember to set your
$PYTHONPATH if the module can’t be imported. You can provide this argument multiple times.

-p PACKAGE or --package=PACKAGE:

A package to look in. This looks in all the modules in this class and subclasses for SQLObject classes.

--class=CLASSMATCH:

This restricts the classes found to the matching classes. You may use wildcards. You can provide multiple
--class arguments, and if any pattern matches the class will be included.

--egg=EGG_SPEC:

This is an Egg description that should be loaded. So if you give --egg=ProjectName it’ll load that
egg, and look in ProjectName.egg-info/sqlobject.txt for some settings (like db_module
and history_dir).

When finding SQLObject classes, we look in the modules for classes that belong to the module – so if you import a
class from another module it won’t be “matched”. You have to indicate its original module.

If classes have to be handled in a specific order, create a soClasses global variable that holds a list of the classes.
This overrides the module restrictions. This is important in databases with referential integrity, where dependent tables
can’t be created before the tables they depend on.

Simple Commands

The create Command

This finds the tables and creates them. Any tables that exist are simply skipped.

It also collects data from sqlmeta.createSQL (added in svn trunk) and runs the queries after table creation. createSQL
can be a string with a single SQL command, a list of SQL commands, or a dictionary with keys that are dbNames and
values that are either single SQL command string or a list of SQL commands. An example follows:

58 Chapter 1. Documentation

http://peak.telecommunity.com/DevCenter/PythonEggs

SQLObject Documentation, Release 3.3.0

class MyTable(SQLObject):
class sqlmeta:

createSQL = {'postgres': [
"ALTER TABLE my_table ADD CHECK(my_field != '');",
]}

myField = StringCol()

The sql Command

This shows the SQL to create all the tables.

The drop Command

Drops tables! Missing tables are skipped.

The execute Command

This executes an arbitrary SQL expression. This is mostly useful if you want to run a query against a database
described by a SQLObject connection string. Use --stdin if you want to pipe commands in; otherwise you give the
commands as arguments.

The list Command

Lists out all the classes found. This can help you figure out what classes you are dealing with, and if there’s any
missing that you expected.

The status Command

This shows if tables are present in the database. If possible (it depends on the database) it will also show if the tables
are missing any columns, or have any extra columns, when compared to the table the SQLObject class describes. It
doesn’t check column types, indexes, or constraints. This feature may be added in the future.

Versioning & Upgrading

There’s two commands related to storing the schema and upgrading the database: record and upgrade.

The idea is that you record each iteration of your schema, and this gets a version number. Something like
2003-05-04a. If you are using source control you’ll check all versions into your repository; you don’t overwrite
one with the next.

In addition to the on-disk record of the different schemas you have gone through, the database itself contains a record
of what version it is at. By having all the versions available at once, we can upgrade from any version. But more on
that later

Basic Usage

Here’s a quick summary of how you use these commands:

1.10. The sqlobject-admin Tool 59

SQLObject Documentation, Release 3.3.0

1. In project where you’ve never used sqlobject-admin before, you run sqlobject-admin record
--output-dir=sqlobject-history. If your active database is up-to-date with the code, then the tool
will add a sqlobject_db_version table to the database with the current version.

2. Now, make some updates to your code. Don’t update the database! (You could, but for now it’s more fun if you
don’t.)

3. Run sqlobject-admin record --edit. A new version will be created, and an editor will be opened
up.

The record Command

Record will take the SQL CREATE statements for your tables, and output them in new version. It creates the version
by using the ISO-formatted date (YYYY-MM-DD) and a suffix to make it unique. It puts each table in its own file.

This normally doesn’t touch the database at all – it only records the schema as defined in your code, regardless of the
database. In fact, I recommend calling record before you update your database.

The upgrade Command

Future

• Get record to do svn cp when creating a new version, then write over those files; this way the version
control system will have nice diffs.

• An option to record the SQL for multiple database backends at once (now only the active backend is recorded).

• An option to upgrade databases with Python scripts instead of SQL commands. Or a little of both.

• Review all the verbosity, maybe add logging, review simulation.

• Generate simple ALTER statements for upgrade scripts, to give people something to work with. Maybe.

• A command to trim versions, by merging upgrade scripts.

Contents

• Inheritance

– Why

– Who, What and How

– Limitations and notes

Inheritance

Why

Imagine you have a list of persons, and every person plays a certain role. Some persons are students, some are
professors, some are employees. Every role has different attributes. Students are known by their department and year.
Professors have a department (some attributes are common for all or some roles), timetable and other attributes.

60 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

How does one implement this in SQLObject? Well, the obvious approach is to create a table Person with a column that
describes or name the role, and a table for an every role. Then one must write code that interprets and dereferences the
role column.

Well, the inheritance machinery described below does exactly this! Only it does it automagically and mostly transpar-
ent to the user.

First, you create a table Person. Nothing magical here:

class Person(SQLObject):
name = StringCol()
age = FloatCol()

Now you need a hierarchy of roles:

class Role(InheritableSQLObject):
department = StringCol()

The magic starts here! You inherit the class from the special root class InheritableSQLObject and provide a
set of attributes common for all roles. Other roles must be inherited from Role:

class Student(Role):
year = IntCol()

class Professor(Role):
timetable = StringCol()

Now you want a column in Person that can be interpreted as the role. Easy:

class Person(SQLObject):
name = StringCol()
age = FloatCol()
role = ForeignKey("Role")

That’s all, really! When asked for its role, Person returns the value of its .role attribute dereferenced and interpreted.
Instead of returning an instance of class Role it returns an instance of the corresponding subclass - a Student or a
Professor.

This is a brief explanation based on a task people meet most often, but of course it can be used far beyond the
person/role task. I also omitted all details in the explanation. Now look at the real working program:

from sqlobject import *
from sqlobject.inheritance import InheritableSQLObject

__connection__ = "sqlite:/:memory:"

class Role(InheritableSQLObject):
department = StringCol()

class Student(Role):
year = IntCol()

class Professor(Role):
timetable = StringCol(default=None)

class Person(SQLObject):
name = StringCol()
age = FloatCol()
role = ForeignKey("Role", default=None)

1.11. Inheritance 61

SQLObject Documentation, Release 3.3.0

Role.createTable()
Student.createTable()
Professor.createTable()
Person.createTable()

first_year = Student(department="CS", year=1)
lecturer = Professor(department="Mathematics")

student = Person(name="A student", age=21, role=first_year)
professor = Person(name="A professor", age=42, role=lecturer)

print student.role
print professor.role

It prints:

<Student 1 year=1 department='CS'>
<Professor 2 timetable=None department='Mathematics'>

You can get the list of all available roles:

print list(Role.select())

It prints:

[<Student 1 year=1 department='CS'>, <Professor 2 timetable=None department=
→˓'Mathematics'>]

Look - you have gotten a list of Role’s subclasses!

If you add a MultipleJoin column to Role, you can list all persons for a given role:

class Role(InheritableSQLObject):
department = StringCol()
persons = MultipleJoin("Person")

for role in Role.select():
print role.persons

It prints:

[<Person 1 name='A student' age=21.0 roleID=1>]
[<Person 2 name='A professor' age=42.0 roleID=2>]

If you you want your persons to have many roles, use RelatedJoin:

class Role(InheritableSQLObject):
department = StringCol()
persons = RelatedJoin("Person")

class Student(Role):
year = IntCol()

class Professor(Role):
timetable = StringCol(default=None)

class Person(SQLObject):

62 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

name = StringCol()
age = FloatCol()
roles = RelatedJoin("Role")

Role.createTable()
Student.createTable()
Professor.createTable()
Person.createTable()

first_year = Student(department="CS", year=1)
lecturer = Professor(department="Mathematics")

student = Person(name="A student", age=21)
student.addRole(first_year)
professor = Person(name="A professor", age=42)
professor.addRole(lecturer)

print student.roles
print professor.roles

for role in Role.select():
print role.persons

It prints:

[<Student 1 year=1 department='CS'>]
[<Professor 2 timetable=None department='Mathematics'>]
[<Person 1 name='A student' age=21.0>]
[<Person 2 name='A professor' age=42.0>]

Who, What and How

Daniel Savard has implemented inheritance for SQLObject. In terms of ORM this is a kind of vertical inheritance.
The only difference is that objects reference their leaves, not parents. Links to parents are reconstructed at run-time
using the hierarchy of Python classes.

• As suggested by Ian Bicking, each child class now has the same ID as the parent class. No more need for childID
column and parent foreignKey (and a small speed boost).

• No more need to call getSubClass, as the ‘latest’ child will always be returned when an instance of a class is
created.

• This version now seems to work correctly with addColumn, delColumn, addJoin and delJoin.

The following code:

from sqlobject.inheritance import InheritableSQLObject
class Person(InheritableSQLObject):

firstName = StringCol()
lastName = StringCol()

class Employee(Person):
_inheritable = False
position = StringCol()

will generate the following tables:

1.11. Inheritance 63

https://cayenne.apache.org/docs/3.0/modeling-inheritance.html

SQLObject Documentation, Release 3.3.0

CREATE TABLE person (
id INT PRIMARY KEY,
child_name TEXT,
first_name TEXT,
last_name TEXT

);

CREATE TABLE employee (
id INT PRIMARY KEY,
position TEXT

)

A new class attribute _inheritable is added. When this new attribute is set to 1, the class is marked ‘inheritable’
and a new columns will automatically be added: childName (TEXT).

Each class that inherits from a parent class will get the same ID as the parent class. So, there is no need to keep track
of parent ID and child ID, as they are the same.

The column childName will contain the name of the child class (for example ‘Employee’). This will permit a class
to always return its child class if available (a person that is also an employee will always return an instance of the
employee class).

For example, the following code:

p = Person(firstName='John', lastName='Doe')
e = Employee(firstName='Jane', lastName='Doe', position='Chief')
p2 = Person.get(1)

Will create the following data in the database:

Person
id

child_name
first_name
last_name

0
Null
John
Doe

1
Employee
Jane
Doe

Employee
id

position
1

Chief

You will still be able to ask for the attribute normally: e.firstName will return Jane and setting it will write the new
value in the person table.

If you use p2, as p2 is a person object, you will get an employee object. person(0) will return a Person instance and will
have the following attributes: firstName and lastName. person(1) or employee(1) will both return the same Employee
instance and will have the following attributes: firstName, lastName and position.

Also, deleting a person or an employee that is linked will destroy both entries as one would expect.

64 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

The SQLObject q magic also works. Using these selects is valid:

Employee.select(AND(Employee.q.firstName == 'Jane', Employee.q.position == 'Chief'))
→˓will return Jane Doe
Employee.select(AND(Person.q.firstName == 'Jane', Employee.q.position == 'Chief'))
→˓will return Jane Doe
Employee.select(Employee.q.lastName == 'Doe') will only return Jane Doe (as Joe isn't
→˓an employee)
Person.select(Person.q.lastName == 'Doe') will return both entries.

The SQL ‘where’ clause will contain additional clauses when used with ‘inherited’ classes. These clauses are the link
between the id and the parent id. This will look like the following request:

SELECT employee.id, person.first_name, person.last_name
FROM person, employee WHERE person.first_name = 'Jane'
AND employee.position = 'Chief' AND person.id = employee.id

Limitations and notes

• Only single inheritance will work. It is not possible to inherit from multiple SQLObject classes.

• It is possible to inherit from an inherited class and this will work well. In the above example, you can have a
Chief class that inherits from Employee and all parents attributes will be available through the Chief class.

• You may not redefine columns in an inherited class (this will raise an exception).

• If you don’t want ‘childName’ columns in your last class (one that will never be inherited), you must set
‘_inheritable’ to False in this class.

• The inheritance implementation is incompatible with lazy updates. Do not set lazyUpdate to True. If you need
this, you have to patch SQLObject and override many methods - _SO_setValue(), sync(), syncUpdate() at least.
Patches will be gladly accepted.

• You’d better restrain yourself to simple use cases. The inheritance implementation is easily choked on more
complex cases.

• A join between tables inherited from the same parent produces incorrect result due to joins to the same parent
table (they must use different aliases).

• Inheritance works in two stages - first it draws the IDs from the parent table and then it draws the rows
from the children tables. The first stage could fail if you try to do complex things. For example, Chil-
dren.select(orderBy=Children.q.column, distinct=True) could fail because at the first stage inheritance generates
a SELECT query for the parent table with ORDER BY the column from the children table.

• I made it because I needed to be able to have automatic inheritance with linked tables.

• This version works for me; it may not work for you. I tried to do my best but it is possible that I broke some
things... So, there is no warranty that this version will work.

• Thanks to Ian Bicking for SQLObject; this is a wonderful python module.

• Although all the attributes are inherited, the same does not apply to sqlmeta data. Don’t try to get a parent
column via the sqlmeta.columns dictionary of an inherited InheritableSQLObject: it will raise a KeyError. The
same applies to joins: the sqlmeta.joins list will be empty in an inherited InheritableSQLObject if a join has
been defined in the parent class, even though the join method will work correctly.

• If you have suggestion, bugs, or patch to this patch, you can contact the SQLObject team: <sqlobject-discuss at
lists.sourceforge.net>

1.11. Inheritance 65

SQLObject Documentation, Release 3.3.0

Contents

• Versioning

– Why

– How

– Inheritance

– Version Tables

Versioning

Why

You have a table where rows can be altered, such as a table of wiki pages. You want to retain a history of changes for
auditing, backup, or tracking purposes.

You could write a decorator that stores old versions and manage all access to this object through it. Or you could take
advantage of the event system in SQLObject 0.8+ and just catch row accesses to the object. SQLObject’s versioning
module does this for you. And it even works with inheritance!

How

Here’s how to set it up:

class MyClass(SQLObject):
name = StringCol()
versions = Versioning()

To use it, just create an instance as usual:

mc = MyClass(name='fleem')

Then make some changes and check out the results:

mc.set(name='morx')
assert mc.versions[0].name == 'fleem'

You can also restore to a previous version:

mc.versions[0].restore()
assert mc.name == "fleem"

Inheritance

There are three ways versioning can be used with inheritance:

1. Parent versioned, children unversioned:

66 Chapter 1. Documentation

SQLObject Documentation, Release 3.3.0

class Base(InheritableSQLObject):
name = StringCol()
versions = Versioning()

class Child(Base):
toy = StringCol()

In this case, when changes are made to an instance of Base, new versions are created. But when changes are made to
an instance of Child, no new versions are created.

2. Children versioned, parents unversioned.

In this case, when changes are made to an instance of Child, new versions are created. But when changes are made to
an instance of Base, no new versions are created. The version data for Child contains all of the columns from child
and from base, so that a full restore is possible.

3. Both children and parents versioned.

In this case, changes to either Child or Base instances create new versions, but in different tables. Child versions still
contain all Base data, and a change to a Child only creates a new Child version, not a new Base version.

Version Tables

Versions are stored in a special table which is created when the table for a versioned class is created. Version tables
are not altered when the main table is altered, so if you add a column to your main class, you will need to manually
add the column to your version table.

Views and SQLObjects

In general, if your database backend supports defining views you may define them outside of SQLObject and treat
them as a regular table when defining your SQLObject class.

ViewSQLObject

The rest of this document is experimental.

from sqlobject.views import *

ViewSQLObject is an attempt to allow defining views that allow you to define a SQL query that acts like a SQLOb-
ject class. You define columns based on other SQLObject classes .q SQLBuilder columns, have columns that are
aggregates of other columns, and join multiple SQLObject classes into one and add restrictions using SQLBuilder
expressions.

The resulting classes are currently read only, if you find use for this idea please bring discussion to the mailing list.

A short example from the tests will suffice for now.

Base classes:

class PhoneNumber(SQLObject):
number = StringCol()
calls = SQLMultipleJoin('PhoneCall')
incoming = SQLMultipleJoin('PhoneCall', joinColumn='toID')

class PhoneCall(SQLObject):

1.13. Views and SQLObjects 67

SQLObject Documentation, Release 3.3.0

phoneNumber = ForeignKey('PhoneNumber')
to = ForeignKey('PhoneNumber')
minutes = IntCol()

View classes:

class ViewPhoneCall(ViewSQLObject):
class sqlmeta:

idName = PhoneCall.q.id
clause = PhoneCall.q.phoneNumberID==PhoneNumber.q.id

minutes = IntCol(dbName=PhoneCall.q.minutes)
number = StringCol(dbName=PhoneNumber.q.number)
phoneNumber = ForeignKey('PhoneNumber', dbName=PhoneNumber.q.id)
call = ForeignKey('PhoneCall', dbName=PhoneCall.q.id)

class ViewPhone(ViewSQLObject):
class sqlmeta:

idName = PhoneNumber.q.id
clause = PhoneCall.q.phoneNumberID==PhoneNumber.q.id

minutes = IntCol(dbName=func.SUM(PhoneCall.q.minutes))
numberOfCalls = IntCol(dbName=func.COUNT(PhoneCall.q.phoneNumberID))
number = StringCol(dbName=PhoneNumber.q.number)
phoneNumber = ForeignKey('PhoneNumber', dbName=PhoneNumber.q.id)
calls = SQLMultipleJoin('PhoneCall', joinColumn='phoneNumberID')
vCalls = SQLMultipleJoin('ViewPhoneCall', joinColumn='phoneNumberID')

SQLObject Developer Guide

Contents

• SQLObject Developer Guide

– Development Installation

– Architecture

* Columns, validators and converters

– Branch workflow

– Style Guide

– Testing

– Documentation

These are some notes on developing SQLObject.

Development Installation

First install FormEncode:

68 Chapter 1. Documentation

http://www.formencode.org/en/latest/download.html

SQLObject Documentation, Release 3.3.0

$ git clone git://github.com/formencode/formencode.git
$ cd formencode
$ sudo python setup.py develop

Then do the same for SQLObject:

$ git clone git clone git://github.com/sqlobject/sqlobject.git
$ cd sqlobject
$ sudo python setup.py develop

Or rather fork it and clone your fork. To develop a feature or a bugfix create a separate branch, push it to your fork
and create a pull request to the original repo. That way CI will be triggered to test your code.

Voila! The packages are globally installed, but the files from the checkout were not copied into site-packages.
See setuptools for more.

Architecture

There are three main kinds of objects in SQLObject: tables, columns and connections.

Tables-related objects are in sqlobject/main.py module. There are two main classes: SQLObject and sqlmeta; the
latter is not a metaclass but a parent class for sqlmeta attribute in every class - the authors tried to move there all
attributes and methods not directly related to columns to avoid cluttering table namespace.

Connections are instances of DBConnection class (from sqlobject/dbconnection.py) and its concrete descendants.
DBConnection contains generic code for generating SQL, working with transactions and so on. Concrete connec-
tion classes (like PostgresConnection and SQLiteConnection) provide backend-specific functionality.

Columns, validators and converters

Columns are instances of classes from sqlobject/col.py. There are two classes for every column: one is for user to
include into an instance of SQLObject, an instance of the other is automatically created by SQLObject’s metaclass.
The two classes are usually named Col and SOCol; for example, BoolCol and SOBoolCol. User-visible classes,
descendants of Col, seldom contain any code; the main code for a column is in SOCol descendants and in validators.

Every column has a list of validators. Validators validate input data and convert input data to python data and back.
Every validator must have methods from_python and to_python. The former converts data from python to
internal representation that will be converted by converters to SQL strings. The latter converts data from SQL data to
python. Also please bear in mind that validators can receive None (for SQL NULL) and SQLExpression (an object
that represents SQLObject expressions); both objects must be passed unchanged by validators.

Converters from sqlobject/converters.py aren’t visible to users. They are used behind the scene to convert objects
returned by validators to backend-specific SQL strings. The most elaborated converter is StringLikeConverter.
Yes, it converts strings to strings. It converts python strings to SQL strings using backend-specific quoting rules.

Let look into BoolCol as an example. The very BoolCol doesn’t have any code. SOBoolCol has a method to cre-
ate BoolValidator and methods to create backend-specific column type. BoolValidator has identical meth-
ods from_python and to_python; the method passes None, SQLExpression and bool values unchanged; int
and objects that have method __nonzero__ (__bool__ in Python 3) are converted to bool; other objects trig-
ger validation error. Bool values that are returned by call to from_python will be converted to SQL strings by
BoolConverter; bool values from to_python (is is supposed they are originated from the backend via DB API
driver) are passed to the application.

Objects that are returned from from_python must be registered with converters. Another approach for
from_python is to return an object that has __sqlrepr__ method. Such objects convert to SQL strings them-
selves, converters are not used.

1.14. SQLObject Developer Guide 69

https://setuptools.readthedocs.io/en/latest/index.html

SQLObject Documentation, Release 3.3.0

Branch workflow

Initially SQLObject was being developed using Subversion. Even after switching to git development process
somewhat preserves the old workflow.

The trunk, called master in git, is the most advanced and the most unstable branch. It is where new features are
applied. Bug fixes are applied to oldstable and stable branches and are merged upward – from oldstable to
stable and from stable to master.

Style Guide

Generally you should follow the recommendations in PEP 8, the Python Style Guide. Some things to take particular
note of:

• With a few exceptions sources must be flake8-clean (and hence pep8-clean). Please consider using pre-commit
hook installed by running flake8 --install-hook.

• No tabs. Not anywhere. Always indent with 4 spaces.

• We don’t stress too much on line length. But try to break lines up by grouping with parenthesis instead of with
backslashes (if you can). Do asserts like:

assert some_condition(a, b), (
"Some condition failed, %r isn't right!" % a)

• But if you are having problems with line length, maybe you should just break the expression up into multiple
statements.

• Blank lines between methods, unless they are very small and closely bound to each other.

• Never use the form condition and trueValue or falseValue. Break it out and use a variable.

• Careful of namespace pollution. SQLObject does allow for from sqlobject import * so names should
be fairly distinct, or they shouldn’t be exported in sqlobject.__init__.

• We’re very picky about whitespace. There’s one and only one right way to do it. Good examples:

short = 3
longerVar = 4

if x == 4:
do stuff

func(arg1='a', arg2='b')
func((a + b)*10)

Bad examples:

short =3
longerVar=4

if x==4: do stuff

func(arg1 = 'a', arg2 = 'b')
func(a,b)
func(a, b)
[1, 2, 3]

70 Chapter 1. Documentation

http://www.python.org/dev/peps/pep-0008/
https://gitlab.com/pycqa/flake8

SQLObject Documentation, Release 3.3.0

To us, the poor use of whitespace seems lazy. We’ll think less of your code (justified or not) for this very trivial
reason. We will fix all your code for you if you don’t do it yourself, because we can’t bear to look at sloppy
whitespace.

• Use @@ to mark something that is suboptimal, or where you have a concern that it’s not right. Try to also date it
and put your username there.

• Docstrings are good. They should look like:

class AClass(object):
"""
doc string...
"""

Don’t use single quotes (‘’‘). Don’t bother trying make the string less vertically compact.

• Comments go right before the thing they are commenting on.

• Methods never, ever, ever start with capital letters. Generally only classes are capitalized. But definitely never
methods.

• mixedCase is preferred.

• Use cls to refer to a class. Use meta to refer to a metaclass (which also happens to be a class, but calling a
metaclass cls will be confusing).

• Use isinstance instead of comparing types. E.g.:

if isinstance(var, str): ...
Bad:
if type(var) is StringType: ...

• Never, ever use two leading underscores. This is annoyingly private. If name clashes are a concern, use name
mangling instead (e.g., _SO_blahblah). This is essentially the same thing as double-underscore, only it’s
transparent where double underscore obscures.

• Module names should be unique in the package. Subpackages shouldn’t share module names with sibling or
parent packages. Sadly this isn’t possible for __init__, but it’s otherwise easy enough.

• Module names should be all lower case, and probably have no underscores (smushedwords).

Testing

Tests are important. Tests keep everything from falling apart. All new additions should have tests.

Testing uses pytest, an alternative to unittest. It is available at http://pytest.org/ and https://pypi.python.org/pypi/
pytest. Read its getting started document for more.

To actually run the test, you have to give it a database to connect to. You do so with the option -D. You can either give a
complete URI or one of several shortcuts like mysql (these shortcuts are defined in the top of tests/dbtest.py).

All the tests are modules in sqlobject/tests. Each module tests one kind of feature, more or less. If you are
testing a module, call the test module tests/test_modulename.py – only modules that start with test_ will
be picked up by pytest.

The “framework” for testing is in tests/dbtest. There’s a couple of important functions:

setupClass(soClass) creates the tables for the class. It tries to avoid recreating tables if not necessary.

supports(featureName) checks if the database backend supports the named feature. What backends support
what is defined at the top of dbtest.

1.14. SQLObject Developer Guide 71

http://pytest.org/
https://pypi.python.org/pypi/pytest
https://pypi.python.org/pypi/pytest
http://docs.pytest.org/en/latest/getting-started.html

SQLObject Documentation, Release 3.3.0

If you import * you’ll also get pytest’s version of raises, an inserts function that can create instances for you,
and a couple miscellaneous functions.

If you submit a patch or implement a feature without a test, we’ll be forced to write the test. That’s no fun for us, to
just be writing tests. So please, write tests; everything at least needs to be exercised, even if the tests are absolutely
complete.

We now use Travis CI and AppVeyor to run tests. See the statuses: To avoid triggering unnecessary test run at CI
services add text [skip ci] or [ci skip] anywhere in your commit messages for commits that don’t change code
(documentation updates and such).

We use coverage.py to measures code coverage by tests and upload the result for analyzis to Coveralls and Codecov:

Documentation

Please write documentation. Documentation should live in the docs/ directory in reStructuredText format. We use
Sphinx to convert docs to HTML.

Authors

SQLObject was originally written by Ian Bicking <ianb@colorstudy.com>.

Contributions have been made by:

• Frank Barknecht <fbar at footils.org>

• Bud P. Bruegger <bug at sistema.it>

• David M. Cook <dave at davidcook.org>

• Luke Opperman <luke at metathusalan.com>

• James Ralston <jralston at hotmail.com>

• Sidnei da Silva <sidnei at awkly.org>

• Brad Bollenbach <brad at bbnet.ca>

• Daniel Savard, Xsoli Inc <sqlobject at xsoli.com>

• alexander smishlajev <alex at ank-sia.com>

• Yaroslav Samchuk <yarcat at ank-sia.com>

• Runar Petursson <grunar at gmail.com>

• J Paulo Fernandes Farias <jpaulofarias at gmail.com>

• Shahms King <shahms at shahms.com>

• David Turner, The Open Planning Project

• Dan Pascu <dan at ag-projects.com>

• Diez B. Roggisch <deets at web.de>

• Christopher Singley <csingley at gmail.com>

• David Keeney <dkeeney at rdbhost.com>

• Daniel Fetchinson <fetchinson at googlemail.com>

• Neil Muller <drnlmuller+sqlobject at gmail.com>

72 Chapter 1. Documentation

http://docs.pytest.org/en/latest/assert.html#assertions-about-expected-exceptions
https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build
https://pypi.python.org/pypi/coverage
https://coveralls.io/github/sqlobject/sqlobject
https://codecov.io/gh/sqlobject/sqlobject
mailto:ianb@colorstudy.com

SQLObject Documentation, Release 3.3.0

• Petr Jakes <petr.jakes at tpc.cz>

• Ken Lalonde

• Andrew Ziem <ahz001 at gmail.com>

• Andrew Trusty <atrusty at gatech.edu>

• Ian Cordasco <graffatcolmingov at gmail.com>

• Lukasz Dobrzanski <lukasz.m.dobrzanski at gmail.com>

• Gregor Horvath <gh at gregor-horvath.com>

• Nathan Edwards <nje5 at georgetown.edu>

• Lutz Steinborn <l.steinborn at 4c-gmbh.de>

• Oleg Broytman <phd@phdru.name>

TODO

• Stop supporting Python 2.6. Fix dbconnection.py and joins.py.

• PyPy.

• Quote table/column names that are reserved keywords (order => “order”, values => values for MySQL).

• RelatedJoin.hasOther(otherObject[.id])

• createParamsPre/Post:

class MyTable(SQLObject):
class sqlmeta:

createParamsPre = 'TEMPORARY IF NOT EXISTS'
createParamsPre = {temporary: True, ifNotExists: True,

'postgres': 'LOCAL'}
createParamsPost = 'ENGINE InnoDB'
createParamsPost = {'mysql': 'ENGINE InnoDB',

'postgres': 'WITH OIDS'}

• SQLObject.fastInsert().

• IntervalCol

• TimedeltaCol

• Cached join results.

• Invert tests isinstance(obj, (tuple, list)) to not isinstance(obj, basestr) to allow any iterable.

• Always use .lazyIter().

• Optimize Iteration.next() - use cursor.fetchmany().

• Generators instead of loops (fetchall => fetchone).

• Cache columns in sqlmeta.getColumns(); reset the cache on add/del Column/Join.

• Make ConnectionHub a context manager instead of .doInTransaction().

• Make version_info a namedtuple.

• Expression columns - in SELECT but not in INSERT/UPDATE. Something like this:

1.16. TODO 73

mailto:phd@phdru.name

SQLObject Documentation, Release 3.3.0

class MyClass(SQLObject):
function1 = ExpressionCol(func.my_function(MyClass.q.col1))
function2 = ExpressionCol('sum(col2)')

• A hierarchy of exceptions. SQLObject should translate exceptions from low-level drivers to a consistent set of
high-level exceptions.

• Memcache.

• Refactor DBConnection to use parameterized queries instead of generating query strings.

• PREPARE/EXECUTE.

• Protect all .encode(), catch UnicodeEncode exceptions and reraise Invalid.

• More kinds of joins, and more powerful join results (closer to how select works).

• Better joins - automatic joins in .select() based on ForeignKey/MultipleJoin/RelatedJoin.

• Deprecate, then remove connectionForOldURI.

• Switch from setuptools to distribute.

• Support PyODBC driver for all backends.

• dbms is a DB API wrapper for DB API drivers for IBM DB2, Firebird, MSSQL Server, MySQL, Oracle,
PostgreSQL, SQLite and ODBC.

• dict API: use getitem interface for column access instead of getattr; reserve getattr for internal attributes only;
this helps to avoid collisions with internal attributes.

• Or move column values access to a separate namespace, e.g. .c: row.c.column.

• More documentation.

• RSS 2.0 and Atom news feeds.

• Use DBUtils, especially SolidConnection.

• _fromDatabase currently doesn’t support IDs that don’t fit into the normal naming scheme. It should do so.
You can still use _idName with _fromDatabase.

• More databases supported. There has been interest and some work in the progress for Oracle. IWBN to have
Informix and DB2 drivers.

• Better transaction support – right now you can use transactions for the database, but objects aren’t transaction-
aware, so non-database persistence won’t be able to be rolled back.

• Optimistic locking and other techniques to handle concurrency.

• Profile of SQLObject performance to identify bottlenecks.

• Increase hooks with FormEncode validation and form generation package, so SQLObject classes (read:
schemas) can be published for editing more directly and easily. (First step: get Schema-generating method
into sqlmeta class)

• Merge SQLObject.create*, .create*SQL methods with DBPI.create* methods.

• Made SQLObject unicode-based instead of just unicode-aware. All internal processing should be done with
unicode strings, conversion to/from ascii strings should happen for non-unicode DB API drivers.

• Allow to override ConsoleWriter/LogWriter classes and makeDebugWriter function.

• Type annotations and mypy tests.

74 Chapter 1. Documentation

https://pypi.python.org/pypi/dbms
https://pypi.python.org/pypi/DBUtils

CHAPTER 2

Example

This is just a snippet that creates a simple class that wraps a table:

>>> from sqlobject import *
>>>
>>> sqlhub.processConnection = connectionForURI('sqlite:/:memory:')
>>>
>>> class Person(SQLObject):
... fname = StringCol()
... mi = StringCol(length=1, default=None)
... lname = StringCol()
...
>>> Person.createTable()

SQLObject supports most database schemas that you already have, and can also issue the CREATE statement for you
(seen in Person.createTable()).

Here’s how you’d use the object:

>>> p = Person(fname="John", lname="Doe")
>>> p
<Person 1 fname='John' mi=None lname='Doe'>
>>> p.fname
'John'
>>> p.mi = 'Q'
>>> p2 = Person.get(1)
>>> p2
<Person 1 fname='John' mi='Q' lname='Doe'>
>>> p is p2
True

75

SQLObject Documentation, Release 3.3.0

76 Chapter 2. Example

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

77

	Documentation
	Example
	Indices and tables

